Advertisement

Introduction

  • Luis Blay EstebanEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The industrial aim associated to this project is to improve the efficiency of a novel device that separates glass and plastic particles from a co-mingled waste product coming from Material Recovery Facilities (MRF). This waste product is mainly composed of glass, plastic, paper-based materials and metals. However, most of the metals are removed from the raw product before this enters the separator, whereas paper and other cellulose-based materials are suspended in water. Thus, the main task of this device is to separate plastics that are lighter and heavier than water from glass; and the later water treatment that permits to filter the pulp suspended in it.

References

  1. 1.
    Moffet RC, Prather KA (2009) In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. PNAS 106:11872–77CrossRefGoogle Scholar
  2. 2.
    Sabban L, van Hout R (2011) Measurements of pollen grain dispersal in still air and stationary near homogeneous, isotropic turbulence. J Aerosol Sci 42:867–882CrossRefGoogle Scholar
  3. 3.
    Janhall S (2015) Review on urban vegetation and particle air pollution - deposition and dispersion. Atmos Environ 105:130–137CrossRefGoogle Scholar
  4. 4.
    Monchaux R, Bourgoin M, Cartellier A (2012) Analyzing preferential concentration and clustering of inertial particles in turbulence. Int J Multiph Flow 40CrossRefGoogle Scholar
  5. 5.
    Ashbaugh HS, Guo X, Schwahn D, Prudhomme RK, Richter D, Fetters LJ (2005) Interaction of paraffin wax gels with ethylene/vinyl acetate co-polymers. Energy Fuels 19:138–144CrossRefGoogle Scholar
  6. 6.
    Binks BP, Tyowua AT (2016) Oil-in-oil emulsions stabilised solely by solid particles. Soft Matter 12(3):876–888CrossRefGoogle Scholar
  7. 7.
    Sullivan AP, Kilpatrick PK (2002) The effects of inorganic solid particles on water and crude oil emulsion stability. Ind Eng Chem Res 41:3389–3404CrossRefGoogle Scholar
  8. 8.
    Sinquin A, Palermo T, Peysson Y (2004) Rheological and flow properties of gas hydrate suspensions. Oil Gas Sci Technol 59(1):41–57CrossRefGoogle Scholar
  9. 9.
    Muller RH, Radtke M, Wissing SA (2002) Solid lidip nanoparticles (sln) and nanostructured lidip carriers (nlc) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:131–155CrossRefGoogle Scholar
  10. 10.
    Muller RH, Mader K, Gohla S (2000) Solid lidip nanoparticles (sln) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–177CrossRefGoogle Scholar
  11. 11.
    Derksen JJ (2009) Scalar mixing with fixed and fluidized particles in micro-reactors. Chem Eng Res Des 87:550–556CrossRefGoogle Scholar
  12. 12.
    Hoef MA, Annaland M, Deen NG, Kuipers JAM (2008) Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Ann Rev Fluid Mech 40:47–70MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bu C, Liu D, Chen X, Pallares D, Gomez A (2014) Ignition behavior of single coal particle in fluidized bed under \(o_2\)\(co_2\) and \(o_2\)\(n_2\) atmospheres: a combination of visual image and particle temperature. Appl Energy 115:301–308CrossRefGoogle Scholar
  14. 14.
    Son SY, Kihm KD (1998) Effect of coal particle size on coal-water slurry (cws) atomization. At Sprays 8:503–519CrossRefGoogle Scholar
  15. 15.
    Anping S, Fanghua L, Guosheng LHD, Xing Z (2016) Characteristics of particle size distributions for the collapsed riverbank along the desert reach of the upper yellow river. Int J Sediment ResGoogle Scholar
  16. 16.
    Barhtyar R, Barry D, Li L, Jeng D, Yeganeh B (2009) Modeling sediment transport in the swash zone: a review. Ocean Eng 36:767–783CrossRefGoogle Scholar
  17. 17.
    Dail HJ, Merrifield MA, Bevis M (2000) Steep beach morphology changes due to energetic wave forcing. Mar Geol 162:443–458CrossRefGoogle Scholar
  18. 18.
    Kolb CE, Worsnop DR (2012) Chemistry and compositions of atmospheric aerosol particles. Ann Rev Phys Chem 63:471–491CrossRefGoogle Scholar
  19. 19.
    Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Ann Rev Fluid Mech 42:113–133zbMATHCrossRefGoogle Scholar
  20. 20.
    Gore RA, Crowe CT (1989) Effect of particle size on modulating turbulent intensity. Int J Multiph Flow 15(2):279–285CrossRefGoogle Scholar
  21. 21.
    Fox RO (2012) Large-eddy-simulation tools for multiphase flows. Ann Rev Fluid Mech 44:47–76MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Subramaniam S (2013) Lagrangian-eulerian methods for multiphase flows. Prog Energy Combust Sci 39:215–245CrossRefGoogle Scholar
  23. 23.
    Gouesbet G, Berlemont A (1999) Eulerian and lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog Energy Combust Sci 25:133–159CrossRefGoogle Scholar
  24. 24.
    Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Ann Rev Fluid Mech 41:375–404MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Loth E (2008) Drag of non-spherical solid particles of regular and irregular shape. Powder Technol 182:342–353CrossRefGoogle Scholar
  26. 26.
    Holzer A, Sommerfeld M (2008) New simple correlation formula for the drag coefficient on non-spherical particles. Powder Technol 184:361–365CrossRefGoogle Scholar
  27. 27.
    Gabitto J, Tsouris C (2008) Drag coefficient and settling velocity for particles of cylindrical shape. Powder Technol 183:314–322CrossRefGoogle Scholar
  28. 28.
    Fornari W, Picano F, Brandt L (2016a) Sedimentation of finite-size spheres in quiescent and turbulent environments. J Fluid Mech 788:640–669MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Byron M, Einarsson J, Gustavsson K, Voth G, Mehlig B, Variano E (2015) Shape-dependence of particle rotation in isotropic turbulence. Phys Fluids 27:035101CrossRefGoogle Scholar
  30. 30.
    Klein S, Gibert M, Berut A, Bodenschatz E (2013) Simultaneous 3d measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow. Meas Sci Technol 24CrossRefGoogle Scholar
  31. 31.
    Meyer CR, Byron ML, Variano EA (2013) Rotational diffusion of particles in turbulence. Limnol Ocean: Fluids Environ 3:89–102CrossRefGoogle Scholar
  32. 32.
    Bellani G, Margaret LB, Collignon AG, Colin RM, Variano EA (2012) Shape effects on turbulent modulation by large nearly neutrally bouyant particles. J Fluid Mech 712:41–60MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF (2011). Tracking the dynamics of translation and absolute orientation of a sphere in a turbulent flow. Rev Sci Instrum 82CrossRefGoogle Scholar
  34. 34.
    Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF (2011). Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow. Phys Rev Lett 106, 154501Google Scholar
  35. 35.
    Taylor JR (2005) Classical mechanics. University Science Books, Mill ValleyzbMATHGoogle Scholar
  36. 36.
    Basset AB (1888) A treatise on hydrodynamics. Deighton Bell, Cambridge, p 2Google Scholar
  37. 37.
    Boussinesq J (1903) Theorie analitique de la chaleur. Gauthier-Villars, Paris, p 2Google Scholar
  38. 38.
    Oseen CW (1927) Hydrodynamik. Akademische Verlag, Leipzig, p 2zbMATHGoogle Scholar
  39. 39.
    Tchen CM (1947). Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. PhD thesis, TU Delft, Delft University of TechnologyGoogle Scholar
  40. 40.
    Maxey MR, Riley JJ (1983) Equation of motion for a small rifid sphere in a nonuniform flow. Phys Fluids 26(4):883–889zbMATHCrossRefGoogle Scholar
  41. 41.
    Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic, New YorkGoogle Scholar
  42. 42.
    Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large reynolds. C. R. Acad Sci U. R. S. S. 30:301MathSciNetGoogle Scholar
  43. 43.
    Elghobashi S, Truesdell GC (1992) Direct simulation of particle dispersion in a decaying isotropic turbulence. J Fluid Mech 242:655–700CrossRefGoogle Scholar
  44. 44.
    Ruetsch GR, Meiburg E (1993) On the motion of small spherical bubbles in two-dimensional vortical flows. Phys Fluids A 5:2326–2341zbMATHCrossRefGoogle Scholar
  45. 45.
    Lasheras JC, Tio KK (1994) Dynamics of a small spherical particle in steady two-dimensional vortex flows. Appl Mech Rev 6(47):61–69CrossRefGoogle Scholar
  46. 46.
    Tio KK, Ganan AM, Lasheras JC (1993) The dynamics of small, heavy, rigid, spherical particle in a periodic stuart vortex flow. Phys Fluids A 5:1679–1693MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Wang LP, Maxey MR (1993) Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 256:27–68CrossRefGoogle Scholar
  48. 48.
    Truesdell GC, Elghobashi S (1994) On the two way interaction between homogeneous turbulence and dispersed solid particles. ii. Phys Fluids 6:1405–1407CrossRefGoogle Scholar
  49. 49.
    Yang CY, Lei U (1998) The role of the turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 371:179–205zbMATHCrossRefGoogle Scholar
  50. 50.
    Aliseda A, Cartellier A, Hainaux F, Lasheras JC (2002) Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 468:77–105zbMATHCrossRefGoogle Scholar
  51. 51.
    Wood AM, Hwang W, Eaton JK (2005) Preferential concentration of particles in homogeneous and isotropic turbulence. Int J Multiph Flow 31:1220–1230zbMATHCrossRefGoogle Scholar
  52. 52.
    Maxey MR, Corrsin S (1986) Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J Atmos Sci 43:1112–1134CrossRefGoogle Scholar
  53. 53.
    Yang TS, Shy SS (2003) The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys Fluids 15(4):868–880zbMATHCrossRefGoogle Scholar
  54. 54.
    Obligado M, Teitelbaum T, Cartellier A, Mininni P, Bourgoin M (2014) Preferential concentration of heavy particles in turbulence. J Turbul 15:293–310CrossRefGoogle Scholar
  55. 55.
    Xu H, Bodenschatz E (2008) Motion of inertial particles with size larger than kolmogorov scale in turbulent flows. Phys D Nonlinear PhenomGoogle Scholar
  56. 56.
    Voth GA, Porta A, Crawford AM, Alezander J, Bodenschatz E (2002) Measurement of particle accelerations in fully developed turbulence. J Fluid Mech 469:121–160zbMATHCrossRefGoogle Scholar
  57. 57.
    Ott S, Mann J (2000) An experimental investigation of the relative diffusion of particle paris in three-dimensional turbulent flow. J FLuid Mech 422:207–223zbMATHCrossRefGoogle Scholar
  58. 58.
    Schmitt FG, Seuront L (2008) Intermittent turbulence and copepod dynamics: increase in encounter rates through preferential concentration. J Mar Syst 70:263–272CrossRefGoogle Scholar
  59. 59.
    Qureshi NM, Bourgoin M, Baudet C, Cartellier A, Gagne Y (2007) Turbulent transport of material particles: an experimental study of finite size effect. Phys Rev Lett 99:184502Google Scholar
  60. 60.
    Bagchi P, Balachandar S (2013) Effect of turbulence on the drag and lift of a particle. Phys Fluids 11(15):3496–3513zbMATHGoogle Scholar
  61. 61.
    Willmarth WW, Hawk NE, Harvey RL (1964) Steady and unsteady motions and wakes of freely falling disks. Phys Fluids 7:197–208zbMATHCrossRefGoogle Scholar
  62. 62.
    Rhodes M (2008) Introduction to particle technology, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  63. 63.
    Allen T (1990) Particle size measurements, vol 20, 4th edn. Chapman and hall, LondonCrossRefGoogle Scholar
  64. 64.
    Wadell H (1934) Some new sedimentation formulas. Physics 5:281–291CrossRefGoogle Scholar
  65. 65.
    Christiansen EB, Barker DH (1965) The effect of shape and density on the free settling of particle at high reynolds number. AIChE J 50(11):145–151CrossRefGoogle Scholar
  66. 66.
    List R, Schemenauer RS (1971) Free-fall behaviour of planar snow crystals, conical graupel and small hail. J Atmos Sci 28:110–115CrossRefGoogle Scholar
  67. 67.
    Leith D (1987) Drag on non-spherical objects. Aerosol Sci Tech 6:153–161CrossRefGoogle Scholar
  68. 68.
    Chhabra RP, Agarwal L, Sinha NK (1999) Drag on non-spherical particles: an evaluation of available methods. Powder Technol 101:288–295CrossRefGoogle Scholar
  69. 69.
    Haider AM, Levenspiel O (1989) Drag on non-spherical particles: an evaluation of available methods. Powder Technol 58:63–70CrossRefGoogle Scholar
  70. 70.
    Ganser GH (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77:143–152CrossRefGoogle Scholar
  71. 71.
    Chien SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281–289CrossRefGoogle Scholar
  72. 72.
    Hartman M, Trnka O, Svoboda K (1994) Free settling of nonspherical particles. Ind Eng Chem Res 33:1979–1983CrossRefGoogle Scholar
  73. 73.
    Swamee PK, Ohja CP (1991) Drag coefficient and fall velocity of nonspherical particles. J Hydr Eng 117:660–667CrossRefGoogle Scholar
  74. 74.
    Heymsfield AJ, Westbrook CD (2010) Advances in the estimation of ice particle fall speeds using laboratory and field measurements. Am MeteorolD Soc 2469–2482CrossRefGoogle Scholar
  75. 75.
    Mitchell DL (1996) use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J Atmos Sci 53:1710–1723CrossRefGoogle Scholar
  76. 76.
    Stringham GE, Simons DB, Guy HP (1969) The behaviour of large particles falling in quiescent liquids. U.S, Department of InteriorGoogle Scholar
  77. 77.
    Field SB, Klaus M, Moore MG, Nori F (1977) Chaotic dynamics of falling disks. Nature 388:252–254CrossRefGoogle Scholar
  78. 78.
    Maxwell JC (1853) On a particular case of the descent of a heavy body in a resisting medium. Camb Dublin Math J 9:115–118Google Scholar
  79. 79.
    Dupleich P (1941) Rotation in free fall of rectangular wings of elongated shape. NACA Tech. Memo 1201:1–99Google Scholar
  80. 80.
    Smith EH (1971) Autorotating wings: an experimental investigation. J Fluid Mech 50:513–534CrossRefGoogle Scholar
  81. 81.
    Belmonte A, Eisenberg H, Moses E (1998) From flutter to tumble: intertial drag and froude similarity in falling paper. Phys Rev Lett 81:345–348CrossRefGoogle Scholar
  82. 82.
    Mahadevan L, Ryu WS, Samuel ADT (1999) Tumbling cards. Phys Fluids 11:1–3zbMATHCrossRefGoogle Scholar
  83. 83.
    Andersen A, Pesavento U, Wang ZJ (2005b) Unsteady aerodynamics of fluttering and tumbling plates. J Fluid Mech 541:65–90MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Andersen A, Pesavento U, Wang ZJ (2005a) Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J Fluid Mech 541:91–104MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Auguste F, Magnaudet J, Fabre D (2013) Falling styles of disks. J Fluid Mech. 719:388–405zbMATHCrossRefGoogle Scholar
  86. 86.
    Churst M, Bouchet G, Dusek J (2013) Numerical simulation of the dynamics of freely falling discs. Phys Fluids 25:044102CrossRefGoogle Scholar
  87. 87.
    Jayaweera KOLF, Mason BJ (1965) The behaviour of freely falling cylinders and cones in a viscous fluid. J Fluid Mech 22:709–720zbMATHCrossRefGoogle Scholar
  88. 88.
    Gustavsson K, Einarsson J, Mehlig B (2014) Tumbling of small axisymmetric particles in random and turbulent flows. Phys Rev Lett 112:014501Google Scholar
  89. 89.
    Parsa S, Calzavarini E, Toschi F, Voth GA (2012) Rotation rate of rods in turbulent fluid flow. Phys Rev Lett 109:1–10CrossRefGoogle Scholar
  90. 90.
    Marcus GG, Parsa S, Kramel S, Ni R, Voth GA (2014) Measurement of the solid-body rotation of anisotropic particles in 3d turbulence. New J Phys 16:102001CrossRefGoogle Scholar
  91. 91.
    Ni R, Ouellette NT, Voth GA (2014). Alignment of vorticity and rods with lagrangian fluid stretching in turbulence. J Fluid Mech 743Google Scholar
  92. 92.
    Voth GA, Soldati A (2017) Anisotropic particles in turbulence. Ann Rev Fluid Mech 49:249–276MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Shirolkar JS, Coimbra CFM, McQuay MQ (1996) Fundamental aspect of modelling turbulence particle dispersion in dilute flows. Prog Energy Combust 22:363–399Google Scholar
  94. 94.
    Sun L, Lin JZ, Wu FL, Chen YM (2004) Effect of non-spherical particles on the fluid turbuelnce in a particulate pipe flow. J Hydrodyn 16(6)Google Scholar
  95. 95.
    Esteban LB, Shrimpton JS, Rogers P, Ingram R (2016) Three clean products from co-mingled waste using a novel hydrodynamic separator. Int J Sustain Dev Plan 11:792–803CrossRefGoogle Scholar
  96. 96.
    Tropea C, Yarin A, Foss JF (2007) Handbook of experimental fluid mechanics. Springer, BerlinGoogle Scholar
  97. 97.
    Navier CLMH (1822) Memoire ur les lois du mouvement des fluides. Mem Acad Sci Inst Fr 6:389–440Google Scholar
  98. 98.
    Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Aero and Astro EngineeringUniversity of SouthamptonSouthamptonUK

Personalised recommendations