Advertisement

Future Research Perspectives

  • Merab Svanadze
Chapter
Part of the Interdisciplinary Applied Mathematics book series (IAM, volume 51)

Abstract

In this chapter, a number of open research problems in the theories of elasticity and thermoelasticity for quadruple porosity materials are considered.

References

  1. 2.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, New York (2003)zbMATHGoogle Scholar
  2. 7.
    Aifantis, E.C.: Further comments on the problem of heat extraction from hot dry rocks. Mech. Res. Commun. 7, 219–226 (1980)CrossRefGoogle Scholar
  3. 8.
    Aifantis, E.C., Beskos, D.E.: Heat extraction from hot dry rocks. Mech. Res. Commun. 7, 165–170 (1980)MathSciNetCrossRefGoogle Scholar
  4. 9.
    Albers, B.: Modeling and Numerical Analysis of Wave Propagation in Saturated and Partially Saturated Porous Media. Shaker Verlag, Maastricht (2009)Google Scholar
  5. 10.
    Albers, B., Kuczma, M. (eds): Continuous Media with Microstructure 2. Springer, Basel (2016)zbMATHGoogle Scholar
  6. 11.
    Allard, J.F., Atalla, N.: Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd edn. Wiley, West Sussex (2009)CrossRefGoogle Scholar
  7. 12.
    Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences, vol. 107. Springer, Berlin (1995)Google Scholar
  8. 18.
    Augustin, M.A.: A Method of Fundamental Solutions in Poroelasticity to Model the Stress Field in Geothermal Reservoirs. Springer, Cham (2015)zbMATHCrossRefGoogle Scholar
  9. 19.
    Ba, J., Carcione, J.M., Nie, J.X.: Biot-Rayleigh theory of wave propagation in double-porosity media. J. Geophys. Res. 116, B06202 (2011). https://doi.org/10.1029/2010JB008185 CrossRefGoogle Scholar
  10. 20.
    Bai, M., Roegiers, J.C.: Fluid flow and heat flow in deformable fractured porous media. Int. J. Eng. Sci. 32, 1615–1633 (1994)zbMATHCrossRefGoogle Scholar
  11. 23.
    Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rat. Mech. Anal. 63, 337–403 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 26.
    Barry, S.I., Aldis, G.K.: Radial flow through deformable porous shells. J. Aust. Math. Soc. Ser. B 34, 333–354 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 28.
    Basheleishvili, M.O.: Basic plane boundary value problems for nonhomogeneous anisotropic elastic bodies (Russian). Trudy Tbil. Univ. 117, 279–293 (1966)Google Scholar
  14. 29.
    Basheleishvili, M., Bitsadze, L.: Two-dimensional boundary value problems of the theory of consolidation with double porosity. Mem. Diff. Equ. Math. Phys. 51, 43–58 (2010)MathSciNetzbMATHGoogle Scholar
  15. 30.
    Basheleishvili, M., Bitsadze, L.: Explicit solutions of the BVPs of the theory of consolidation with double porosity for the half-space. Bull. TICMI 14, 9–15 (2010)MathSciNetzbMATHGoogle Scholar
  16. 31.
    Basheleishvili, M., Bitsadze, L.: Explicit solutions of the boundary value problems of the theory of consolidation with double porosity for the half-plane. Georgian Math. J. 19, 41–48 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 32.
    Basheleishvili, M., Bitsadze, L.: The basic BVPs of the theory of consolidation with double porosity for the sphere. Bull TICMI 16, 15–26 (2012)MathSciNetzbMATHGoogle Scholar
  18. 33.
    Bazarra, N., Fernández, J.R.: Numerical analysis of a contact problem in poro-thermoelasticity with microtemperatures. ZAMM J. Appl. Math. Mech. 98, 1190–1209 (2018)MathSciNetCrossRefGoogle Scholar
  19. 34.
    Bazarra, N., Berti, A., Fernández, J.R., Naso, M.G.: Analysis of contact problems of porous thermoelastic solids. J. Therm. Stresses 41, 439–468 (2018)CrossRefGoogle Scholar
  20. 38.
    Berryman, J.G., Wang, H.F.: Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. Int. J. Rock Mech. Min. Sci. 37, 63–78 (2000)CrossRefGoogle Scholar
  21. 39.
    Berti, A., Naso, M.G.: A contact problem of a thermoelastic rod with voids and microtemperatures. ZAMM J. Appl. Math. Mech. 97, 670–685 (2017)MathSciNetCrossRefGoogle Scholar
  22. 41.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)zbMATHCrossRefGoogle Scholar
  23. 42.
    Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 45.
    Biot, M.A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27, 459–467 (1956)MathSciNetCrossRefGoogle Scholar
  25. 46.
    Biot, M.A.: Theory of finite deformations of porous solids. Indiana Univ. Math. J. 21, 597–620 (1972)zbMATHCrossRefGoogle Scholar
  26. 47.
    Biot, M.A.: Nonlinear and semilinear rheology of porous solids. J. Geophys. Res. 78, 4924–4937 (1973)CrossRefGoogle Scholar
  27. 49.
    Bîrsan, M.: Existence and uniqueness of weak solution in the linear theory of elastic shells with voids. Libertas Math. 20, 95–105 (2000)MathSciNetzbMATHGoogle Scholar
  28. 50.
    Bîrsan, M.: A bending theory of porous thermoelastic plates. J. Therm. Stresses 26, 67–90 (2003)MathSciNetCrossRefGoogle Scholar
  29. 51.
    Bîrsan, M.: Saint-Venant’s problem for Cosserat shells with voids. Int. J. Solids Struct. 42, 2033–2057 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 52.
    Bîrsan, M.: On a thermodynamic theory of porous Cosserat elastic shells. J. Therm. Stresses 29, 879–899 (2006)MathSciNetCrossRefGoogle Scholar
  31. 53.
    Bîrsan, M.: On the theory of elastic shells made from a material with voids. Int. J. Solids Struct. 43, 3106–3123 (2006)zbMATHCrossRefGoogle Scholar
  32. 54.
    Bîrsan, M.: Several results in the dynamic theory of thermoelastic Cosserat shells with voids. Mech. Res. Commun. 33, 157–176 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 55.
    Bîrsan, M.: On the bending equations for elastic plates with voids. Math. Mech. Solids 12, 40–57 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 56.
    Bitsadze, L., Tsagareli, I.: Solutions of BVPs in the fully coupled theory of elasticity for the space with double porosity and spherical cavity. Math. Methods Appl. Sci. 39, 2136–2145 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 57.
    Bitsadze, L., Tsagareli, I.: The solution of the Dirichlet BVP in the fully coupled theory of elasticity for spherical layer with double porosity. Meccanica 51, 1457–1463 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 58.
    Bitsadze, L., Zirakashvili, N.: Explicit solutions of the boundary value problems for an ellipse with double porosity. Adv. Math. Phys. 2016, 1810795, 11 pp. (2016). https://doi.org/10.1155/2016/1810795
  37. 62.
    Bucur, A.V., Passarella, F., Tibullo, V.: Rayleigh surface waves in the theory of thermoelastic materials with voids. Meccanica 49, 2069–2078 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 63.
    Burchuladze, T.V.: Two-dimensional boundary value problems of thermoelasticity (Russian). Trudy Tbil. Mat. Inst. AN GSSR 39, 5–22 (1971)Google Scholar
  39. 67.
    Carcione, J.M.: Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 3rd edn. Elsevier, Amsterdam (2015)Google Scholar
  40. 69.
    Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Modena 3, 83–101 (1948)MathSciNetzbMATHGoogle Scholar
  41. 70.
    Cattani, C., Rushchitsky, J.J.: Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructure. World Scientific, Singapore (2007)zbMATHCrossRefGoogle Scholar
  42. 71.
    Chandrasekharaiah, D.S.: Thermoelasticity with second sound - a review. Appl. Mech. Rev. 39, 355–376 (1986)zbMATHCrossRefGoogle Scholar
  43. 72.
    Chandrasekharaiah, D.S.: Surface waves in an elastic half-space with voids. Acta Mech. 62, 77–85 (1986)zbMATHCrossRefGoogle Scholar
  44. 73.
    Chandrasekharaiah, D.S.: Rayleigh-Lamb waves in an elastic plate with voids. J. Appl. Mech. 54, 509–512 (1987)zbMATHCrossRefGoogle Scholar
  45. 76.
    Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)CrossRefGoogle Scholar
  46. 77.
    Chen, J., Dargush, G.F.: Boundary element method for dynamic poroelastic and thermoelastic analyses. Int. J. Solids Struct. 32, 2257–2278 (1995)zbMATHCrossRefGoogle Scholar
  47. 79.
    Cheng, A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29, 268–302 (2005)zbMATHCrossRefGoogle Scholar
  48. 80.
    Chirita, S.: Rayleigh waves on an exponentially graded poroelastic half space. J. Elast. 110, 185–199 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 81.
    Chirita, S.: High-order approximations of three-phase-lag heat conduction model: some qualitative results. J. Therm. Stresses 41, 608–626 (2018)CrossRefGoogle Scholar
  50. 82.
    Chirita, S.: On high-order approximations for describing the lagging behavior of heat conduction. Math. Mech. Solids 24, 1648–1667 (2018)MathSciNetCrossRefGoogle Scholar
  51. 83.
    Chirita, S.: High-order effects of thermal lagging in deformable conductors. Int. J. Heat Mass Transf. 127, 965–974 (2018)CrossRefGoogle Scholar
  52. 86.
    Chirita, S., Zampoli, V.: Spatial behavior of the dual-phase-lag deformable conductors. J. Therm. Stresses 41, 1276–1296 (2018)CrossRefGoogle Scholar
  53. 87.
    Chirita, S., Ciarletta, M., Straughan, B.: Structural stability in porous elasticity. Proc. Roy. Soc. Lond. A 462, 2593–2605 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 91.
    Ciarletta, M., Scalia, A.: On the nonlinear theory of nonsimple thermoelastic materials with voids. ZAMM J. Appl. Math. Mech. 73, 67–75 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 92.
    Ciarletta, M., Straughan, B.: Poroacoustic acceleration waves. Proc. R. Soc. A 462, 3493–3499 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 93.
    Ciarletta, M., Straughan, B.: Poroacoustic acceleration waves with second sound. J. Sound Vib. 306, 725–731 (2007)zbMATHCrossRefGoogle Scholar
  57. 96.
    Ciarletta, M., Straughan, B., Zampoli, V.: Thermo-poroacoustic acceleration waves in elastic materials with voids without energy dissipation. Int. J. Eng. Sci. 45, 736–743 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 98.
    Ciarletta, M., Straughan, B., Tibullo, V.: Structural stability for a rigid body with thermal microstructure. Int. J. Eng. Sci. 48, 592–598 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 99.
    Ciarletta, M., Passarella, F., Svanadze, M.: Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity. J. Elast. 114, 55–68 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 100.
    Ciarletta, M., Straughan, B., Tibullo, V.: Acceleration waves in a nonlinear Biot theory of porous media. Int. J. Non-Linear Mech. 103, 23–26 (2018)CrossRefGoogle Scholar
  61. 103.
    Constanda, C.: The boundary integral equation method in plane elasticity. Proc. Am. Math. Soc. 123, 3385–3396 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 104.
    Corapcioglu, M.Y., Tuncay, K.: Propagation of waves in porous media. In: Corapcioglu, M.Y. (ed.) Advances in Porous Media, vol. 3, pp. 361–440. Elsevier, Amsterdam (1996)CrossRefGoogle Scholar
  63. 109.
    Cowin, S.C.: The viscoelastic behavior of linear elastic materials with voids. J. Elast. 15, 185–191 (1985)zbMATHCrossRefGoogle Scholar
  64. 112.
    Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)zbMATHCrossRefGoogle Scholar
  65. 115.
    Dafermos, C.M.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Rat. Mech. Anal. 29, 241–271 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 116.
    Dai, W.Z., Kuang, Z.B.: Love waves in double porosity media. J. Sound Vib. 296, 1000–1012 (2006)CrossRefGoogle Scholar
  67. 117.
    Dai, Z.J., Kuang, Z.B., Zhao, S.X.: Rayleigh waves in a double porosity half-space. J. Sound Vib. 298, 319–332 (2006)CrossRefGoogle Scholar
  68. 118.
    Dai, Z.J., Kuang, Z.B., Zhao, S.X.: Reflection and transmission of elastic waves from the interface of a fluid-saturated porous solid and a double porosity solid. Transp. Porous Media 65, 237–264 (2006)MathSciNetCrossRefGoogle Scholar
  69. 121.
    D’Apice, C., Zampoli, V.: Advances on the time differential three-phase-lag heat conduction model and major open issues. AIP Conf. Proc. 1863, 560056 (2017). https://doi.org/10.1063/1.4992739
  70. 126.
    de Boer, R., Liu, Z.: Plane waves in a semi-infinite fluid saturated porous medium. Transp. Porous Media 16, 147–173 (1994)CrossRefGoogle Scholar
  71. 128.
    de Boer, R., Liu, Z.: Growth and decay of acceleration waves in incompressible saturated poroelastic solids. ZAMM J. Appl. Math. Mech. 76, 341–347 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 130.
    de Boer, R., Ehlers, W., Liu, Z.: One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Arch. Appl. Mech. 63, 59–72 (1993)zbMATHCrossRefGoogle Scholar
  73. 135.
    Ehlers, W., Bluhm, J. (eds): Porous Media: Theory, Experiments and Numerical Applications. Springer, Berlin (2002)zbMATHGoogle Scholar
  74. 137.
    Fernández, J.R., Magaña, A., Masid, M., Quintanilla, R.: Analysis for the strain gradient theory of porous thermoelasticity. J. Comput. Appl. Math. 345, 247–268 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 138.
    Fichera, G.: Existence theorems in elasticity. In: Truesdel, C. (ed.) Handbuch der Physik, vol. VI a/2. Springer, Berlin (1972)Google Scholar
  76. 142.
    Franchi, F., Lazzari, B., Nibbi, R., Straughan, B.: Uniqueness and decay in local thermal non-equilibrium double porosity thermoelasticity. Math. Methods Appl. Sci. 41, 6763–6771 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 146.
    Gandomkar, A., Gray, K.E.: Local thermal non-equilibrium in porous media with heat conduction. Int. J. Heat Mass Transf. 124, 1212–1216 (2018)CrossRefGoogle Scholar
  78. 148.
    Gelet, R.: Thermo-hydro-mechanical study of deformable porous media with double porosity in local thermal nonequilibrium. Ph.D. Thesis, Institut National Polytechnique de Grenoble, France, and The University of New South Wales, Sydney (2011)Google Scholar
  79. 149.
    Gelet, R., Loret, B., Khalili, N.: Borehole stability analysis in a thermoporoelastic dual-porosity medium. Int. J. Rock Mech. Min. Sci. 50, 65–76 (2012)CrossRefGoogle Scholar
  80. 150.
    Gelet, R., Loret, B., Khalili, N.: A thermo-hydromechanical model in local thermal non-equilibrium for fractured HDR reservoirs with double porosity. J. Geop. Res. 117, B07205 (2012). https://doi.org/10.1029/2012JB009161 CrossRefGoogle Scholar
  81. 151.
    Gelet, R., Loret, B., Khalili, N.: Thermal recovery from a fractured medium in local thermal non-equilibrium. Int. J. Numer. Anal. Methods Geomech. 37, 2471–2501 (2013)CrossRefGoogle Scholar
  82. 152.
    Gentile, M., Straughan, B.: Acceleration waves in nonlinear double porosity elasticity. Int. J. Eng. Sci. 73, 10–16 (2013)zbMATHCrossRefGoogle Scholar
  83. 153.
    Ghiba, I.D.: Spatial estimates concerning the harmonic vibrations in rectangular plates with voids. Arch. Mech. 60, 263–279 (2008)MathSciNetzbMATHGoogle Scholar
  84. 154.
    Ghiba, I.D.: On the temporal behaviour in the bending theory of porous thermoelastic plates. ZAMM J. Appl. Math. Mech. 93, 284–296 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 156.
    Goldstein, J.A.: Semigroups of Linear Operators and Applications. Oxford University Press, New York (1985)zbMATHGoogle Scholar
  86. 158.
    Green, A.E., Adkins, J.E.: Large Elastic Deformations, 2nd edn. Clarendon Press, Oxford (1970)zbMATHGoogle Scholar
  87. 159.
    Green, A.E., Lindsay, K.A.: Thermoelasicity. J. Elast. 2, 1–7 (1972)CrossRefGoogle Scholar
  88. 160.
    Green, A.E., Zerna, W.: Theoretical Elasticity, 2nd edn. Clarendon Press, Oxford (1968)zbMATHGoogle Scholar
  89. 163.
    Hayashi, K., Willis-Richards, J., Hopkirk, R.J., Niibori, Y.: Numerical models of HDR geothermal reservoirs - a review of current thinking and progress. Geothermics 28, 507–518 (1999)CrossRefGoogle Scholar
  90. 174.
    Ieşan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986)CrossRefGoogle Scholar
  91. 177.
    Ieşan, D.: On a theory of thermoviscoelastic materials with voids. J. Elast. 104, 369–384 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 180.
    Ieşan, D., Nappa, L.: Thermal stresses in plane strain of porous elastic solids. Meccanica 39, 125–138 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 181.
    Ieşan, D., Quintanilla, R.: On thermoelastic bodies with inner structure and microtemperatures. J. Math. Anal. Appl. 354, 12–23 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 182.
    Ieşan, D., Quintanilla, R.: Non-linear deformations of porous elastic solids. Int. J. Non-Linear Mech. 49, 57–65 (2013)CrossRefGoogle Scholar
  95. 183.
    Ieşan, D., Quintanilla, R.: On a theory of thermoelastic materials with a double porosity structure. J. Therm. Stresses 37, 1017–1036 (2014)CrossRefGoogle Scholar
  96. 184.
    Ieşan, D., Quintanilla, R.: Viscoelastic materials with a double porosity structure. Comp. Rendus Mécanique 347, 124–140 (2019)CrossRefGoogle Scholar
  97. 185.
    Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, New York (2010)zbMATHGoogle Scholar
  98. 186.
    Jaiani, G.: Cusped Shell-Like Structures. Springer, Heidelberg (2011)zbMATHCrossRefGoogle Scholar
  99. 187.
    Jaiani, G.: Hierarchical models for viscoelastic Kelvin-Voigt prismatic shells with voids. Bull. TICMI 21, 33–44 (2017)MathSciNetzbMATHGoogle Scholar
  100. 189.
    Janjgava, R.: Some three-dimensional boundary value and boundary-contact problems for an elastic mixture with double porosity. Quart. J. Mech. Appl. Math. 71, 411–425 (2018)MathSciNetzbMATHGoogle Scholar
  101. 190.
    Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 191.
    Joseph, D.D., Preziosi, L.: Heat waves: addendum. Rev. Mod. Phys. 62, 375–391 (1990)CrossRefGoogle Scholar
  103. 196.
    Kenyon, D.E.: A mathematical model of water flux through aortic tissue. Bull. Math. Biol. 41, 79–90 (1979)MathSciNetCrossRefGoogle Scholar
  104. 200.
    Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30(24), 2268 (2003). https://doi.org/10.1029/2003GL018838 CrossRefGoogle Scholar
  105. 201.
    Knops, R.J., Payne, L.E.: Stability in linear elasticity. Int. J. Solids Struct. 4, 1233–1242 (1968)zbMATHCrossRefGoogle Scholar
  106. 203.
    Knops, R.J., Payne, L.E.: On uniqueness and continuous dependence in dynamical problems of linear thermoelasticity. Int. J. Solids Struct. 6, 1173–1184 (1970)zbMATHCrossRefGoogle Scholar
  107. 222.
    Legland, J.-B., Tournat, V., Dazel, O., Novak, A., Gusev, V.: Linear and nonlinear Biot waves in a noncohesive granular medium slab: transfer function, self-action, second harmonic generation. J. Acoust. Soc. Am. 131, 4292–4303 (2012)CrossRefGoogle Scholar
  108. 223.
    Leseduarte, M.C., Magaña, A., Quintanilla, R.: On the time decay of solutions in porous-thermo-elasticity of type II. Discrete Contin. Dynam. Syst. Ser. B 13, 375–391 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 224.
    Li, W., Chen, M., Jin, Y., Lu, Y., Gao, J., Meng, H., Zhang, Y., Tan, P.: Effect of local thermal non-equilibrium on thermoporoelastic response of a borehole in dual-porosity media. Appl. Therm. Eng. 142, 166–183 (2018)CrossRefGoogle Scholar
  110. 229.
    Liu, Z., de Boer, R.: Dispersion and attenuation of surface waves in a fluid-saturated porous medium. Transp. Porous Media 29, 207–233 (1997)CrossRefGoogle Scholar
  111. 230.
    Liu, Z., de Boer, R.: Propagation and evolution of wave fronts in two-phase porous media. Transp. Porous Media 34, 209–225 (1999)MathSciNetCrossRefGoogle Scholar
  112. 231.
    Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall/CRC Research Notes in Mathematics, vol. 398. Chapman & Hall/CRC, Boca Raton (1999)Google Scholar
  113. 234.
    Lord, H.W., Shulman, Y.H.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)zbMATHCrossRefGoogle Scholar
  114. 235.
    Magaña, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43, 3414–3427 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 236.
    Magaña, A., Quintanilla, R.: On the exponential decay of solutions in one-dimensional generalized porous-thermo-elasticity. Asymp. Anal. 49, 173–187 (2006)MathSciNetzbMATHGoogle Scholar
  116. 237.
    Magaña, A., Quintanilla, R.: On the decay of in porous-elasticity with quasistatic microvoids. J. Math. Anal. Appl. 331, 617–630 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  117. 240.
    Marin, M.: Weak solutions in elasticity of dipolar porous materials. Math. Prob. Eng. 2008, 158908, 8pp. (2008). https://doi.org/10.1155/2008/158908 2008Google Scholar
  118. 244.
    Maz’ya, V.G: Sobolev Spaces: With Applications to Elliptic Partial Differential Equations, 2nd edn. Grundlehren der mathematischen Wissenschaften, vol. 342. Springer, Berlin (2011)Google Scholar
  119. 255.
    Muñoz-Rivera, J.E., Quintanilla, R.: On the time polynomial decay in elastic solids with voids. J. Math. Anal. Appl. 338, 1296–1309 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 256.
    Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)zbMATHGoogle Scholar
  121. 257.
    Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)zbMATHGoogle Scholar
  122. 258.
    Nield, D.A.: Effects of local thermal non-equilibrium in steady convection processes in saturated porous media: forced convection in a channel. J. Porous Media 1, 181–186 (1998)zbMATHGoogle Scholar
  123. 260.
    Nield, D.A.: A note on local thermal non-equilibrium in porous media near boundaries and interfaces. Transp. Porous Media 95, 581–584 (2012)MathSciNetCrossRefGoogle Scholar
  124. 266.
    Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Rat. Mech. Anal. 72, 175–201 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  125. 267.
    Olny, X., Boutin, C.: Acoustic wave propagation in double porosity media. J. Acoust. Soc. Am. 114, 73–89 (2003)CrossRefGoogle Scholar
  126. 270.
    Pamplona, P.X., Muñoz-Rivera, J.E., Quintanilla, R.: Stabilization in elastic solids with voids. J. Math. Anal. Appl. 350, 37–49 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 271.
    Pamplona, P.X., Muñoz-Rivera, J.E., Quintanilla, R.: On uniqueness and analyticity in thermoviscoelastic solids with voids. J. Appl. Anal. Comput. 1, 251–266 (2011)MathSciNetzbMATHGoogle Scholar
  128. 273.
    Passarella, F., Straughan, B., Zampoli, V.: Structural stability in local thermal non-equilibrium porous media. Acta Appl. Math. 136, 43–53 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 277.
    Pompei, A., Scalia, A.: On the steady vibrations of the thermoelastic porous materials. Int. J. Solids Struct. 31, 2819–2834 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  130. 279.
    Puri, P., Cowin, S.C.: Plane waves in linear elastic material with voids. J. Elast. 15, 167–183 (1985)zbMATHCrossRefGoogle Scholar
  131. 280.
    Quintanilla, R.: Exponential stability in the dual-phase-lag heat conduction theory. J. Non-Equilibrium Thermodynam. 27, 217–227 (2002)zbMATHCrossRefGoogle Scholar
  132. 281.
    Quintanilla, R.: Convergence and structural stability in thermoelasticity. Appl. Math. Comput. 135, 287–300 (2003)MathSciNetzbMATHGoogle Scholar
  133. 283.
    Quintanilla, R., Racke, R.: A note on stability in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 49, 1209–1213 (2006)zbMATHCrossRefGoogle Scholar
  134. 284.
    Quintanilla, R., Racke, R.: A note on stability in three-phase-lag heat conduction. Int. J. Heat Mass Transf. 51, 24–29 (2008)zbMATHCrossRefGoogle Scholar
  135. 286.
    Rees, D.A.S.: Microscopic modelling of the two - temperature model for conduction in heterogeneous media. J. Porous Media 13, 125–143 (2010)CrossRefGoogle Scholar
  136. 287.
    Rees, D.A.S.: The effect of local thermal non-equilibrium on the stability of convection in a vertical porous channel. Transp. Porous Media 87, 459–464 (2011)MathSciNetCrossRefGoogle Scholar
  137. 290.
    Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30, 231–238 (2007)CrossRefGoogle Scholar
  138. 291.
    Rushchitsky, J.J.: Nonlinear Elastic Waves in Materials. Springer, Basel (2014)zbMATHCrossRefGoogle Scholar
  139. 295.
    Sauter, S.A., Schwab, C.: Boundary Element Method. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
  140. 296.
    Scalia, A.: Shock waves in viscoelastic materials with voids. Wave Motion 19, 125–133 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  141. 298.
    Scalia, A., Pompei, A., Chirita, S.: On the behavior of steady time-harmonic oscillations in thermoelastic materials with voids. J. Therm. Stresses 27, 209–226 (2004)MathSciNetCrossRefGoogle Scholar
  142. 303.
    Scarpetta, E.: Minimum principles for the bending problem of elastic plates with voids. Int. J. Eng. Sci. 40, 1317–1327 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  143. 306.
    Schanz, M.: Poroelastodynamics: linear models, analytical solutions, and numerical methods. Appl. Mech. Rev. 62, 030803-1–030803-15 (2009)Google Scholar
  144. 309.
    Sharma, K., Kumar, P.: Propagation of plane waves and fundamental solution in thermoviscoelastic medium with voids. J. Therm. Stresses 36, 94–111 (2013)CrossRefGoogle Scholar
  145. 313.
    Singh, S.S., Lianngenga, R.: Plane waves in micropolar thermoelastic materials with voids. Sci. Technol. J. 4, 141–151 (2016)CrossRefGoogle Scholar
  146. 314.
    Singh, J., Tomar, S.K.: Plane waves in thermo-elastic material with voids. Mech. Mater. 39, 932–940 (2007)CrossRefGoogle Scholar
  147. 315.
    Sobolev, S.L.: Applications of Functional Analysis in Mathematical Physics. American Mathematical Society, Providence (1963)zbMATHCrossRefGoogle Scholar
  148. 317.
    Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer, New York (2008)zbMATHCrossRefGoogle Scholar
  149. 318.
    Straughan, B.: Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. A Math. Phys. 462(2066), 409–418 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 319.
    Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008)zbMATHGoogle Scholar
  151. 320.
    Straughan, B.: Heat Waves. Applied Mathematical Sciences, vol. 177. Springer, New York (2011)Google Scholar
  152. 321.
    Straughan, B.: Continuous dependence on the heat source in resonant porous penetrative convection. Stud. Appl. Math. 127, 302–314 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  153. 322.
    Straughan, B.: Stability and uniqueness in double porosity elasticity. Int. J. Eng. Sci. 65, 1–8 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  154. 323.
    Straughan, B.: Convection with Local Thermal Non-Equilibrium and Microfluidic Effects. Springer, Berlin (2015)zbMATHCrossRefGoogle Scholar
  155. 324.
    Straughan, B.: Modelling questions in multi-porosity elasticity. Meccanica 51, 2957–2966 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  156. 325.
    Straughan, B.: Waves and uniqueness in multi-porosity elasticity. J. Therm. Stresses 39, 704–721 (2016)CrossRefGoogle Scholar
  157. 326.
    Straughan, B.: Mathematical Aspects of Multi-Porosity Continua. Springer, Basel (2017)zbMATHCrossRefGoogle Scholar
  158. 327.
    Straughan, B.: Solid mechanics–uniqueness and stability in triple porosity thermoelasticity. Rend. Lincei Mat. Appl. 28, 191–208 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  159. 328.
    Straughan, B., Tibullo, V.: Thermal effects on nonlinear acceleration waves in the Biot theory of porous media. Mech. Res. Commun. 94, 70–73 (2018)CrossRefGoogle Scholar
  160. 334.
    Svanadze, M.: Plane waves and boundary value problems in the theory of elasticity for solids with double porosity. Acta Appl. Math. 122, 461–471 (2012)MathSciNetzbMATHGoogle Scholar
  161. 337.
    Svanadze, M.: Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Meccanica 49, 2099–2108 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  162. 338.
    Svanadze, M.: On the theory of viscoelasticity for materials with double porosity. Disc. Contin. Dynam. Syst. Ser. B 19, 2335–2352 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  163. 339.
    Svanadze, M.: Boundary value problems in the theory of thermoporoelasticity for materials with double porosity. Proc. Appl. Math. Mech. 14(1), 327–328 (2014)MathSciNetCrossRefGoogle Scholar
  164. 343.
    Svanadze, M.: Plane waves, uniqueness theorems and existence of eigenfrequencies in the theory of rigid bodies with a double porosity structure. In: Albers, B., Kuczma, M. (eds.) Continuous Media with Microstructure, vol. 2, pp. 287–306. Springer, Basel (2016)CrossRefGoogle Scholar
  165. 346.
    Svanadze, M.: Boundary value problems in the theory of thermoelasticity for triple porosity materials. In: Proceedings of ASME2016. 50633; Vol. 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis, V009T12A079. November 11, 2016, IMECE2016-65046 (2016).  https://doi.org/10.1115/IMECE2016-65046
  166. 349.
    Svanadze, M.: Steady vibrations problems in the theory of elasticity for materials with double voids. Acta Mech. 229, 1517–1536 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  167. 352.
    Svanadze, M.: On the linear equilibrium theory of elasticity for materials with triple voids. Quart. J. Mech. Appl. Math. 71, 329–248 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  168. 355.
    Svanadze, M.: On the linear theory of double porosity thermoelasticity under local thermal non-equilibrium. J. Therm. Stresses 42, 890–913 (2019)CrossRefGoogle Scholar
  169. 361.
    Svanadze, M.M.: Steady vibrations problem in the theory of viscoelasticity for Kelvin-Voigt materials with voids. Proc. Appl. Math. Mech. 12, 283–284 (2012)CrossRefGoogle Scholar
  170. 365.
    Svanadze, M.M.: Potential method in the steady vibrations problems of the theory of thermoviscoelasticity for Kelvin-Voigt materials with voids. Proc. Appl. Math. Mech. 14, 347–348 (2014)CrossRefGoogle Scholar
  171. 366.
    Svanadze, M.M.: External boundary value problems in the quasi static theory of viscoelasticity for Kelvin-Voigt materials with double porosity. Proc. Appl. Math. Mech. 16(1), 497–498 (2016)CrossRefGoogle Scholar
  172. 367.
    Svanadze, M.M.: Plane waves and problems of steady vibrations in the theory of viscoelasticity for Kelvin-Voigt materials with double porosity. Arch. Mech. 68, 441–458 (2016)MathSciNetzbMATHGoogle Scholar
  173. 370.
    Svanadze, M.M.: Fundamental solutions and uniqueness theorems in the theory of viscoelasticity for materials with double porosity. Trans. A. Razmadze Math. Inst. 172, 276–292 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  174. 372.
    Tomar, S.K.: Wave propagation in a micropolar elastic plate with voids. J. Vib. Control 11, 849–863 (2005)zbMATHCrossRefGoogle Scholar
  175. 373.
    Tomar, S.K., Bhagwan, J., Steeb, H.: Time harmonic waves in a thermo-viscoelastic material with voids. J. Vib. Control 20, 1119–1136 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  176. 374.
    Tong, L., Liu, Y., Geng, D., Lai, S.: Nonlinear wave propagation in porous materials based on the Biot theory. J. Acoust. Soc. Am. 142, 756–770 (2017)CrossRefGoogle Scholar
  177. 375.
    Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Band III/3, Flügge, S. (ed.). Springer, Berlin (1965)Google Scholar
  178. 377.
    Tsagareli, I.: Explicit solution of elastostatic boundary value problems for the elastic circle with voids. Adv. Math. Phys. 2018, 6275432, 6pp. (2018). https://doi.org/10.1155/2018/6275432
  179. 379.
    Tsagareli, I., Bitsadze, L.: Explicit solutions on some problems in the fully coupled theory of elasticity for a circle with double porosity. Bull. TICMI 20, 11–23 (2016)MathSciNetzbMATHGoogle Scholar
  180. 380.
    Tsagareli, I., Svanadze, M.M.: Explicit solution of the boundary value problems of the theory of elasticity for solids with double porosity. Proc. Appl. Math. Mech. 10, 337–338 (2010)CrossRefGoogle Scholar
  181. 381.
    Tsagareli, I., Svanadze, M.M.: Explicit solution of the problems of elastostatics for an elastic circle with double porosity. Mech. Res. Commun. 46, 76–80 (2012)CrossRefGoogle Scholar
  182. 384.
    Valent, T.: Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data. Springer Tracts in Natural Philosophy, vol. 31. Springer, Berlin (1988)Google Scholar
  183. 385.
    Van Der Knapp, W.: Nonlinear behavior of elastic porous media. Pet. Trans. AIME 216, 179–187 (1959)Google Scholar
  184. 387.
    Vekua, I.N.: Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, Boston (1985)zbMATHGoogle Scholar
  185. 400.
    Zampoli, V.: Uniqueness theorems about high-order time differential thermoelastic models. Ricerche Mat. 67, 929–950 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  186. 401.
    Zampoli, V.: Some continuous dependence results about high-order time differential thermoelastic models. J. Therm. Stresses 41, 827–846 (2018)CrossRefGoogle Scholar
  187. 402.
    Zampoli, V., Landi, A.: A domain of influence result about the time differential three-phase-lag thermoelastic model. J. Therm. Stresses 40, 108–120 (2017)CrossRefGoogle Scholar
  188. 404.
    Zhao, Y., Chen, M.: Fully coupled dual-porosity model for anisotropic formations. Int. J. Rock Mech. Min. Sci. 43, 1128–1133 (2006)CrossRefGoogle Scholar
  189. 127.
    de Boer, R., Liu, Z.: Propagation of acceleration waves in incompressible saturated porous solids. Transp. Porous Media 21, 163–173 (1995)CrossRefGoogle Scholar
  190. 202.
    Knops, R.J., Payne, L.E.: Continuous data dependence for the equations of classical elastodynamics. Math. Proc. Camb. Phil. Soc. 66, 481–491 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  191. 259.
    Nield, D.A.: A note on modelling of local thermal non-equilibrium in a structured porous medium. Int. J. Heat Mass Transf. 45, 4367–4368 (2002)zbMATHCrossRefGoogle Scholar
  192. 362.
    Svanadze, M.M.: Potential method in the linear theory of viscoelastic materials with voids. J. Elast. 114, 101–126 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  193. 363.
    Svanadze, M.M.: On the solutions of equations of the linear thermoviscoelasticity theory for Kelvin-Voigt materials with voids. J. Therm. Stresses 37, 253–269 (2014)CrossRefGoogle Scholar
  194. 364.
    Svanadze, M.M.: Potential method in the theory of thermoviscoelasticity for materials with voids. J. Therm. Stresses 37, 905–927 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Merab Svanadze
    • 1
  1. 1.Ilia State UniversityTbilisiGeorgia

Personalised recommendations