Advertisement

Detection and Classification of Facial Features Through the Use of Convolutional Neural Networks (CNN) in Alzheimer Patients

  • David Castillo-SalazarEmail author
  • José Varela-Aldás
  • Marcelo Borja
  • Cesar Guevara
  • Hugo Arias-Flores
  • Washington Fierro-Saltos
  • Richard Rivera
  • Jairo Hidalgo-Guijarro
  • Marco Yandún-Velasteguí
  • Laura Lanzarini
  • Héctor Gómez Alvarado
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1026)

Abstract

In recent years, the widespread use of artificial neural networks in the field of image processing has been of vital relevance to research. The main objective of this research work is to present an effective and efficient method for the detection of eyes, nose and lips in images that include faces of Alzheimer’s patients. The methods to be used are based on the extraction of deep features from a well-designed convolutional neural network (CNN). The result focuses on the processing and detection of facial features of people with and without Alzheimer’s disease.

Keywords

CNN Alzheimer’s Algorithms Images 

References

  1. 1.
    Yolcu, G., et al.: Deep learning-based facial expression recognition for monitoring neurological disorders. In: Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine BIBM 2017, pp. 1652–1657, January 2017Google Scholar
  2. 2.
    Zhang, H., Qu, Z., Yuan, L., Li, G.: A face recognition method based on LBP feature for CNN. In: Proceedings 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference IAEAC 2017, pp. 544–547 (2017)Google Scholar
  3. 3.
    Gil, R.: Desarrollo de un sistema de reconocimiento de emociones faciales en tiempo real (2017). no. CvcGoogle Scholar
  4. 4.
    Taqi, A.M., Awad, A., Al-Azzo, F., Milanova, M.: The impact of multi-optimizers and data augmentation on tensorflow convolutional neural network performance. In: Proceedings - IEEE 1st Conference on Multimedia Information Processing and Retrieval, MIPR 2018, pp. 140–145 (2018)Google Scholar
  5. 5.
    Yuan, L., Qu, Z., Zhao, Y., Zhang, H., Nian, Q.: A convolutional neural network based on tensorflow for face recognition. In: Proceedings 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference IAEAC 2017, pp. 525–529 (2017)Google Scholar
  6. 6.
    Murata, K., Mito, M., Eguchi, D., Mori, Y., Toyonaga, M.: A single filter CNN performance for basic shape classification. In: 2018 9th International Conference on Awareness Science and Technology iCAST 2018, pp. 139–143 (2018)Google Scholar
  7. 7.
    Qu, D., Huang, Z., Gao, Z., Zhao, Y., Zhao, X., Song, G.: An automatic system for smile recognition based on CNN and face detection. In: 2018 IEEE International Conference on Robotics and Biomimetics, ROBIO 2018, pp. 243–247 (2019)Google Scholar
  8. 8.
    Al-Azzawi, A., Hind, J., Cheng, J.: Localized deep-CNN structure for face recognition. In: Proceedings - International Conference on Developments in eSystems Engineering DeSE, September 2018, pp. 52–57 (2019)Google Scholar
  9. 9.
    Jain, D.K., Shamsolmoali, P., Sehdev, P.: Extended deep neural network for facial emotion recognition. Pattern Recogn. Lett. 120, 69–74 (2019)CrossRefGoogle Scholar
  10. 10.
    Wang, X., Peng, M., Hu, M., Jin, C., Ren, F.: Combination of valence-sensitive loss with restrictive center loss for facial expression recognition. In: Proceedings - 2018 10th International Conference on Advanced Computational Intelligence ICACI 2018, pp. 528–533 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • David Castillo-Salazar
    • 1
    • 4
    Email author
  • José Varela-Aldás
    • 1
  • Marcelo Borja
    • 2
  • Cesar Guevara
    • 3
  • Hugo Arias-Flores
    • 3
  • Washington Fierro-Saltos
    • 4
  • Richard Rivera
    • 5
  • Jairo Hidalgo-Guijarro
    • 6
  • Marco Yandún-Velasteguí
    • 6
  • Laura Lanzarini
    • 7
  • Héctor Gómez Alvarado
    • 8
  1. 1.SISAu Research GroupUniversidad IndoaméricaAmbatoEcuador
  2. 2.Architecture, Art and Design FacultyUniversidad IndoaméricaQuitoEcuador
  3. 3.Mechatronics and Interactive Systems - MIST Research CenterUniversidad IndoaméricaQuitoEcuador
  4. 4.Facultad de InformáticaUniversidad Nacional de la PlataLa PlataArgentina
  5. 5.Escuela de Formación de TecnólogosEscuela Politécnica NacionalQuitoEcuador
  6. 6.GISAT Research GroupUniversidad Politécnica Estatal del CarchiTulcánEcuador
  7. 7.Instituto de Investigación en Informática LIDI (CICPBA Center), Facultad de InformáticaUniversidad Nacional de la PlataLa Plata, Buenos AiresArgentina
  8. 8.Universidad Técnica de AmbatoAmbatoEcuador

Personalised recommendations