Advertisement

Exploring the Intersections of Web Science and Accessibility

  • Trevor BosticEmail author
  • Jeff Stanley
  • John Higgins
  • Daniel Chudnov
  • Rachael L. Bradley Montgomery
  • Justin F. Brunelle
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1026)

Abstract

In this paper, we survey several ongoing research threads that can be applied to web accessibility solutions. We focus on the challenges with automatically evaluating the accessibility violations in websites that are built primarily with JavaScript. There are several research efforts that – in aggregate – provide insight into how users interact with websites; how to automate and simulate user interactions; how to record the results of user interactions; and how to analyze, evaluate, and map resulting website content to determine the relative accessibility. We close with a discussion on the convergence of these threads and the future of automated, web-based accessibility evaluation, and assurance.

Keywords

Accessibility Web science Web archiving 

Notes

Acknowledgments

We would like to thank Sanith Wijesinghe, the Innovation Area Lead funding this research effort as part of MITRE’s internal research and development program (the MIP). We also thank the numerous collaborators that have assisted with the maturation of our research project. © 2019 The MITRE Corporation. Approved for Public Release; Distribution Unlimited. Case Number 19-1636.

References

  1. 1.
    Archive.is (2013). http://archive.is/
  2. 2.
    Berlin, J.: CNN.com has been unarchivable since November 1st, 2016 (2017). http://ws-dl.blogspot.com/2017/01/2017-01-20-cnncom-has-been-unarchivable.html
  3. 3.
    Brunelle, J.F.: Scripts in a frame: a framework for archiving deferred representations. Ph.D. thesis, Old Dominion University (2016)Google Scholar
  4. 4.
    Brunelle, J.F., Kelly, M., Weigle, M.C., Nelson, M.L.: The impact of JavaScript on archivability. Int. J. Digit. Libr. 17(2), 95–117 (2015)CrossRefGoogle Scholar
  5. 5.
    Brunelle, J.F., Weigle, M.C., Nelson, M.L.: Archiving deferred representations using a two-tiered crawling approach. In: Proceedings of iPRES 2015 (2015)Google Scholar
  6. 6.
    Brunelle, J.F., Weigle, M.C., Nelson, M.L.: Archival crawlers and JavaScript: discover more stuff but crawl more slowly. In: Proceedings of the 17th ACM/IEEE Joint Conference on Digital Libraries, pp. 1–10 (2017)Google Scholar
  7. 7.
    Coram, R.G.: Django-phantomjs (2014). https://github.com/ukwa/django-phantomjs
  8. 8.
    Department of Homeland Security. DHS Trusted Tester Program (2018). https://www.dhs.gov/trusted-tester
  9. 9.
    Department of Labor. Laws & Regulations (2018). https://www.dol.gov/general/topic/disability/laws
  10. 10.
    Department of Labor. Americans with Disabilities Act (2018). https://www.dol.gov/general/topic/disability/ada
  11. 11.
    Dincturk, M.E., Jourdan, G.-V., Bochmann, G.V., Onut, I.V.: A model-based approach for crawling rich internet applications. ACM Trans. Web 8(3), 19:1–19:39 (2014)CrossRefGoogle Scholar
  12. 12.
    Garrison, A.: Continuous accessibility inspection & testing. In: Proceedings of the 2018 ICT Accessibility Testing Symposium: Automated & Manual Testing, WCAG2.1, and Beyond, pp. 57–66 (2017)Google Scholar
  13. 13.
    Gorniak, P., Poole, D.: Predicting future user actions by observing unmodified applications. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 217–222 (2000)Google Scholar
  14. 14.
    Hackett, S., Parmanto, B., Zeng, X.: Accessibility of Internet Websites through time. In: Proceedings of the 6th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 32–39 (2003)Google Scholar
  15. 15.
    He, B., Patel, M., Zhang, Z., Chang, K.C.-C.: Accessing the deep Web. Commun. ACM 50(5), 94–101 (2007)CrossRefGoogle Scholar
  16. 16.
    Internet Archive. Brozzler (2017). https://github.com/internetarchive/brozzler
  17. 17.
  18. 18.
    Kanta, S., Insights with PowerMapper and R: An exploratory data analysis of U.S. Government website accessibility scans. In: Proceedings of the 2018 ICT Accessibility Testing Symposium: Mobile Testing, 508 Revision, and Beyond, pp. 65–72 (2018)Google Scholar
  19. 19.
    Kreymer, I.: Browsertrix: browser-based on-demand web archiving automation (2015). https://github.com/ikreymer/browsertrix
  20. 20.
    Kreymer, I.: Webrecorder.io (2015). https://webrecorder.io/
  21. 21.
    Kundu, S., Rohatgi, S.: Generating queries to crawl hidden Web using keyword sampling and random forest classifier. Int. J. Adv. Res. Comput. Sci. 8(9), 337–341 (2017)CrossRefGoogle Scholar
  22. 22.
    Lage, P., da Silva, A.S., Golgher, P.B., Laender, A.H.: Automatic generation of agents for collecting hidden Web pages for data extraction. Data Knowl. Eng. 9(2), 177–196 (2004)CrossRefGoogle Scholar
  23. 23.
    Mesbah, A.: Analysis and testing of Ajax-based single-page Web applications. Ph.D. Dissertation, Delft University of Technology (2009)Google Scholar
  24. 24.
    Mesbah, A., Bozdag, E., van Deursen, A.: Crawling Ajax by inferring user interface state changes. In: Proceedings of the 8th International Conference on Web Engineering, pp. 122–134 (2008)Google Scholar
  25. 25.
    Mesbah, A., van Deursen, A., Lenselink, S.: Crawling Ajax-based Web applications through dynamic analysis of user interface state changes. ACM Trans. Web 6(1), 3:1–3:30 (2012)CrossRefGoogle Scholar
  26. 26.
    Ntoulas, A., Zerfos, P., Cho, J.: Downloading textual hidden Web content through keyword queries. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 100–109 (2005)Google Scholar
  27. 27.
    PhantomJS (2013). http://phantomjs.org/
  28. 28.
    Raghavan, S., Garcia-Molina, H.: Crawling the hidden Web. Technical report 2000-36, Stanford InfoLab (2000)Google Scholar
  29. 29.
  30. 30.
    Sigursson, K.: Incremental crawling with Heritrix. In: Proceedings of the 5th International Web Archiving Workshop, September 2005Google Scholar
  31. 31.
    Vigo, M., Brown, J., Conway, V.: Benchmarking Web accessibility evaluation tools: measuring the harm of sole reliance on automated tests. In: Proceedings of the 22nd International World Wide Web Conference (2013)Google Scholar
  32. 32.
    W3.org. Web accessibility initiative (2018). https://www.w3.org/WAI/
  33. 33.
    World Health Organization. World report on disability. Technical report, World Health Organization (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Trevor Bostic
    • 1
    Email author
  • Jeff Stanley
    • 1
  • John Higgins
    • 1
  • Daniel Chudnov
    • 1
  • Rachael L. Bradley Montgomery
    • 1
  • Justin F. Brunelle
    • 1
  1. 1.The MITRE CorporationBedfordUSA

Personalised recommendations