Distributed Data and Information Management for Crisis Forecasting and Management

  • Barbara Essendorfer
  • Jennifer SanderEmail author
  • Marian Sorin Nistor
  • Almuth Hoffmann
  • Stefan Pickl
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1026)


Crises forecasting and management require different kinds of information (management) processes. In this publication, we give an introduction into Coalition Shared Data (CSD), which is a concept of standardized information distribution, and describe means for its integration into a more comprehensive high level system architecture. Our publication intends to stimulate the potential use of the respective findings in the field of crisis prediction and management. To this aim, we put also particular emphasis on visual analytics approaches for integrating automated data analyses and interactive data visualizations to offer more insights into complex data and information.


Distributed data and information management Coalition Shared Data (CSD) Interoperability Crisis forecasting and management System architectures Visual analytics Content awareness Situation awareness 



The CSD concept is part of multinational projects that were funded by the BMVg (Federal Ministry of Defence).

The authors would like to thank their colleagues, who have contributed to parts of the work presented in this paper, especially Dr. Maximilian Moll and Achim Kuwertz.


  1. 1.
    Usländer, T., Denzer, R.: Requirements and open architecture for environmental risk management information systems. Inf. Syst. Emerg. Manag., 344–368 (2009)Google Scholar
  2. 2.
    Roth, F., Herzog, M.: Strategische Krisenfrüherkennung-Instrumente, Möglichkeiten und Grenzen. Zeitschrift für Außen-und Sicherheitspolitik 9(2), 201–211 (2016)CrossRefGoogle Scholar
  3. 3.
    Zsifkovits, M., Meyer-Nieberg, S., Pickl, S.: Operations research for risk management in strategic foresight. Planet@ Risk 3(2), 281–288 (2015)Google Scholar
  4. 4.
    Essendorfer, B., Kerth, C., Zaschke, C.: Adaptation of Interoperability Standards for Cross Domain Usage. In: Proceedings of the SPIE 10207, Next-Generation Analyst V, 102070E, SPIE (2017)Google Scholar
  5. 5.
    NATO Standardization Office (NSO): STANAG 4559, Edition 4 (2018).
  6. 6.
    Essendorfer, B., Kuwertz, A., Sander, J.: Distributed information management through Coalition Shared Data. In: NATO STO-MP-IST-160, Big Data and Artificial Intelligence for Military Decision Making (2018)Google Scholar
  7. 7.
    Haferkorn, D., Klotz, P., Rodenbeck, R.: Application of a military data dissemination standard in a civil context. In: Proceedings of the SPIE 11015, Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2018, 1101505, SPIE (2019)Google Scholar
  8. 8.
    Zaschke, C., Essendorfer, B., Kerth, C.: Interoperability of heterogeneous distributed systems. In: Proceedings of the SPIE 9825, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security, Defense, and Law Enforcement Applications XV, 98250Q, SPIE (2016)Google Scholar
  9. 9.
    Essendorfer, B., Hoffmann, A., Sander, J., Kuwertz, A.: Integrating Coalition Shared Data in a system architecture for high level information management. In: Proceedings of the SPIE 10802, Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies II, 108020F, SPIE (2018)Google Scholar
  10. 10.
    Rogova, G.L., Scott, P.D.: Fusion Methodologies in Crisis Management. Springer, Chambridge (2016)CrossRefGoogle Scholar
  11. 11.
    Kuwertz, A., Mühlenberg, D., Sander, J., Müller, W.: Applying knowledge-based reasoning for information fusion in Intelligence, Surveillance, and Reconnaissance. In: Lee, S., Ko, H., Oh, S. (eds.) Multisensor Fusion and Integration in the Wake of Big Data, Deep Learning and Cyber Physical System, MFI 2017. LNCS, vol. 501, pp. 119–139. Springer, Heidelberg (2018)Google Scholar
  12. 12.
    Keim, D.A., Mansmann, F., Oelke, D., Ziegler, H.: Visual analytics: combining automated discovery with interactive visualizations. In: Jean-Fran, J.-F., Berthold, M.R., Horváth, T. (eds.) Discovery Science: 11th International Conference, DS 2008, Budapest, Hungary, 13–16 October 2008. Proceedings, pp. 2–14. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Nistor, M.S., Pickl, S.W., Zsifkovits, M.: Visual analytics of complex networks: a review from the computational perspective. In: The 2015 International Conference on Modeling, Simulation and Visualization Methods, Las Vegas, NV, USA, pp. 10–15. CSREA Press, San Diego (2015)Google Scholar
  14. 14.
    Nistor, M.S.: Proof of concept of a visual analytics dashboard for transportation network analysis. In: 51st Hawaii International Conference on System Sciences (HICSS-51) (2018)Google Scholar
  15. 15.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)CrossRefGoogle Scholar
  16. 16.
    Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Barbara Essendorfer
    • 1
  • Jennifer Sander
    • 1
    Email author
  • Marian Sorin Nistor
    • 2
  • Almuth Hoffmann
    • 1
  • Stefan Pickl
    • 2
  1. 1.Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSBKarlsruheGermany
  2. 2.Universität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations