Connected Health in Smart Cities pp 153-178 | Cite as
Incorporating Artificial Intelligence into Medical Cyber Physical Systems: A Survey
Abstract
Medical Cyber Physical Systems (MCPSs) prescribe a platform in which patient health information is acquired by the emerging Internet of Things (IoT) sensors, pre-processed locally, and processed via advanced machine intelligence algorithms in the cloud. The emergence of MCPSs holds the promise to revolutionize remote patient healthcare monitoring, accelerate the development of new drugs or treatments, and improve the quality-of-life for patients who are suffering from various medical conditions among other various applications. The amount of raw medical data gathered through the IoT sensors in an MCPS provides a rich platform that artificial intelligence algorithms can use to provide decision support for either medical experts or patients. In this paper, we provide an overview of MCPSs and the data flow through these systems. This includes how raw physiological signals are converted into features and are used by machine intelligence algorithms, the types of algorithms available for the healthcare domain, how the data and the decision support output are presented to the end user, and how all of these steps are completed in a secure fashion to preserve the privacy of the users.
Keywords
IoT Cloud computing Sensors Physiological signals Machine learning Cyber-physical systemsPreview
Unable to display preview. Download preview PDF.
References
- 1.M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M.K. Aktas, G. Mateos, B. Kantarci, S. Andreescu, Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: opportunities and challenges, in 2015 IEEE International Conference on Services Computing (SCC), New York (June 2015), pp. 285–292Google Scholar
- 2.X. Chen, Z. Zhu, M. Chen, Y. Li, Large-scale mobile fitness app usage analysis for smart health. IEEE Commun. Mag. 56(4), 46–52 (2018)CrossRefGoogle Scholar
- 3.P. Wu, M.Y. Nam, J. Choi, A. Kirlik, L. Sha, R.B. Berlin, Supporting emergency medical care teams with an integrated status display providing real-time access to medical best practices, workflow tracking, and patient data. J. Med. Syst. 41(12), 186 (2017)Google Scholar
- 4.J. Jezewski, A. Pawlak, K. Horoba, J. Wrobel, R. Czabanski, M. Jezewski, Selected design issues of the medical cyber-physical system for telemonitoring pregnancy at home. Microprocess. Microsyst. 46, 35–43 (2016)CrossRefGoogle Scholar
- 5.G. Honan, A. Page, O. Kocabas, T. Soyata, B. Kantarci, Internet-of-everything oriented implementation of secure Digital Health (D-Health) systems, in Proceedings of the 2016 IEEE Symposium on Computers and Communications (ISCC), Messina (Jun 2016), pp. 718–725Google Scholar
- 6.A. Page, S. Hijazi, D. Askan, B. Kantarci, T. Soyata, Research directions in cloud-based decision support systems for health monitoring using Internet-of-Things driven data acquisition. Int. J. Serv. Comput. 4(4), 18–34 (2016)Google Scholar
- 7.104th Congress Public Law 191, Health Insurance Portability and Accountability Act of 1996 (1996). https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm. Accessed 28 July 2017
- 8.O. Kocabas, T. Soyata, M.K. Aktas, Emerging security mechanisms for medical cyber physical systems. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 401–416 (2016)CrossRefGoogle Scholar
- 9.G. Yang, L. Xie, M. Mäntysalo, X. Zhou, Z. Pang, L. Da Xu, S. Kao-Walter, Q. Chen, L.R. Zheng, A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans. Ind. Inf. 10(4), 2180–2191 (2014)CrossRefGoogle Scholar
- 10.D.M. West, How 5G technology enables the health internet of things. Brookings Center for Technology Innovation 3, 1–20 (2016)Google Scholar
- 11.A. Mdhaffar, T. Chaari, K. Larbi, M. Jmaiel, B. Freisleben, IoT-based health monitoring via lorawan, in IEEE EUROCON 2017-17th International Conference on Smart Technologies (IEEE, Piscataway, 2017), pp. 519–524Google Scholar
- 12.A. Page, T. Soyata, J. Couderc, M. Aktas, B. Kantarci, S. Andreescu, Visualization of health monitoring data acquired from distributed sensors for multiple patients, in IEEE Global Telecommunications Conference (GLOBECOM), San Diego (Dec 2015), pp. 1–7Google Scholar
- 13.S. Aust, R.V. Prasad, I.G. Niemegeers, IEEE 802.11ah: advantages in standards and further challenges for sub 1 GHz Wi-Fi, in 2012 IEEE International Conference on Communications (ICC) (IEEE, Piscataway, 2012), pp. 6885–6889Google Scholar
- 14.S. Han, Y.H. Wei, A.K. Mok, D. Chen, M. Nixon, E. Rotvold, Building wireless embedded internet for industrial automation, in IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (IEEE, Piscataway, 2013), pp. 5582–5587Google Scholar
- 15.G. Mokhtari, Q. Zhang, G. Nourbakhsh, S. Ball, M. Karunanithi, Bluesound: a new resident identification sensor—using ultrasound array and BLE technology for smart home platform. IEEE Sens. J. 17(5), 1503–1512 (2017)CrossRefGoogle Scholar
- 16.W.L. Chen, L.B. Chen, W.J. Chang, J.J. Tang, An IoT-based elderly behavioral difference warning system, in 2018 IEEE International Conference on Applied System Invention (ICASI) (IEEE, Piscataway, 2018), pp. 308–309CrossRefGoogle Scholar
- 17.Y. Li, Z. Chi, X. Liu, T. Zhu, Passive-ZigBee: enabling ZigBee communication in IoT networks with 1000x+ less power consumption, in Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems (ACM, New York, 2018), pp. 159–171Google Scholar
- 18.A.M. Rahmani, T.N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang, P. Liljeberg, Exploiting smart e-health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Futur. Gener. Comput. Syst. 78, 641–658 (2018)CrossRefGoogle Scholar
- 19.M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, A.K. Jain, Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4(2), 164–171 (2000)CrossRefGoogle Scholar
- 20.Y. Chen, M. Yang, X. Chen, B. Liu, H. Wang, S. Wang, Sensorineural hearing loss detection via discrete wavelet transform and principal component analysis combined with generalized eigenvalue proximal support vector machine and Tikhonov regularization. Multimed. Tools Appl. 77(3), 3775–3793 (2018)CrossRefGoogle Scholar
- 21.A. Ghandeharioun, S. Fedor, L. Sangermano, D. Ionescu, J. Alpert, C. Dale, D. Sontag, R. Picard, Objective assessment of depressive symptoms with machine learning and wearable sensors data, in Proceedings of the International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio (2017)Google Scholar
- 22.Y. Kim, N. Kaongoen, S. Jo, Hybrid-BCI smart glasses for controlling electrical devices, in 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) (IEEE, Piscataway, 2015), pp. 1162–1166Google Scholar
- 23.C. Li, W.K. Cheung, J. Liu, J.K. Ng, Bayesian nominal matrix factorization for mining daily activity patterns, in 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI) (IEEE, Piscataway, 2016), pp. 335–342Google Scholar
- 24.G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Y. Kim, H. Lee, E.M. Provost, Deep learning for robust feature generation in audiovisual emotion recognition, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, Piscataway, 2013), pp. 3687–3691Google Scholar
- 26.B., Jokanović, M. Amin, Fall detection using deep learning in range-Doppler radars. IEEE Trans. Aerosp. Electron. Syst. 54(1), 180–189 (2018)CrossRefGoogle Scholar
- 27.M. Li, V. Rozgic, G. Thatte, S. Lee, A. Emken, M. Annavaram, U. Mitra, D. Spruijt-Metz, S. Narayanan, Multimodal physical activity recognition by fusing temporal and cepstral information. IEEE Trans. Neural Syst. Rehabil. Eng. 18(4), 369–380 (Aug 2010)CrossRefGoogle Scholar
- 28.A. Sano, R.W. Picard, Stress recognition using wearable sensors and mobile phones, in IEEE Humane Association Conference on Affective Computing and Intelligent Interaction (ACII) (2013), pp. 671–676Google Scholar
- 29.B. Xie, H. Minn, Real-time sleep apnea detection by classifier combination. IEEE Trans. Inf. Technol. Biomed. 16(3), 469–477 (2012)CrossRefGoogle Scholar
- 30.V. Srinivasan, C. Eswaran, N. Sriraam, Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005)CrossRefGoogle Scholar
- 31.B. Lei, S.A. Rahman, I. Song, Content-based classification of breath sound with enhanced features. Neurocomputing 141, 139–147 (2014)CrossRefGoogle Scholar
- 32.D. Sow, A. Biem, M. Blount, M. Ebling, O. Verscheure, Body sensor data processing using stream computing, in Proceedings of the International Conference on Multimedia Information Retrieval (ACM, New York, 2010), pp. 449–458Google Scholar
- 33.S. Souli, Z. Lachiri, Audio sounds classification using scattering features and support vectors machines for medical surveillance. Appl. Acoust. 130, 270–282 (2018)CrossRefGoogle Scholar
- 34.A. Page, T. Soyata, J. Couderc, M.K. Aktas, An open source ECG clock generator for visualization of long-term cardiac monitoring data. IEEE Access 3, 2704–2714 (2015)CrossRefGoogle Scholar
- 35.C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, New York, 2006)zbMATHGoogle Scholar
- 36.D. Sánchez-Morillo, M. López-Gordo, A. León, Novel multiclass classification for home-based diagnosis of sleep apnea hypopnea syndrome. Expert Syst. Appl. 41(4), 1654–1662 (2014)CrossRefGoogle Scholar
- 37.D.S. Lee, T.W. Chong, B.G. Lee, Stress events detection of driver by wearable glove system. IEEE Sens. J. 17(1), 194–204 (2017)MathSciNetGoogle Scholar
- 38.W.H. Wang, Y.L. Hsu, P.C. Chung, M.C. Pai, Predictive models for evaluating cognitive ability in dementia diagnosis applications based on inertia-and gait-related parameters. IEEE Sens. J. 18(8), 3338–3350 (2018)CrossRefGoogle Scholar
- 39.M. Mursalin, Y. Zhang, Y. Chen, N.V. Chawla, Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing 241, 204–214 (2017)CrossRefGoogle Scholar
- 40.B. Nakisa, M.N. Rastgoo, D. Tjondronegoro, V. Chandran, Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2017)CrossRefGoogle Scholar
- 41.H. Li, D. Yuan, X. Ma, D. Cui, L. Cao, Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 7, 41011 (2017)CrossRefGoogle Scholar
- 42.V. Chandola, S.R. Sukumar, J.C. Schryver, Knowledge discovery from massive healthcare claims data, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2013), pp. 1312–1320Google Scholar
- 43.B.M. Marlin, D.C. Kale, R.G. Khemani, R.C. Wetzel, Unsupervised pattern discovery in electronic health care data using probabilistic clustering models, in Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (ACM, New York, 2012), pp. 389–398Google Scholar
- 44.D.P. Chen, S.C. Weber, P.S. Constantinou, T.A. Ferris, H.J. Lowe, A.J. Butte, Clinical arrays of laboratory measures, or “clinarrays”, built from an electronic health record enable disease subtyping by severity, in AMIA (2007)Google Scholar
- 45.D. Sanchez-Morillo, M.A. Fernandez-Granero, A.L. Jiménez, Detecting COPD exacerbations early using daily telemonitoring of symptoms and k-means clustering: a pilot study. Med. Biol. Eng. Comput. 53(5), 441–451 (2015)CrossRefGoogle Scholar
- 46.N.P. Tatonetti, J.C. Denny, S.N. Murphy, G.H. Fernald, G. Krishnan, V. Castro, P. Yue, P.S. Tsau, I. Kohane, D.M. Roden, et al., Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin. Pharmacol. Ther. 90(1), 133 (2011)CrossRefGoogle Scholar
- 47.B. Ustun, M.B. Westover, C. Rudin, M.T. Bianchi, Clinical prediction models for sleep apnea: the importance of medical history over symptoms. J. Clin. Sleep Med. Off. Publ. Am. Acad. Sleep Med. 12(2), 161–168 (2016)CrossRefGoogle Scholar
- 48.S. Hijazi, A. Page, B. Kantarci, T. Soyata, Machine learning in cardiac health monitoring and decision support. IEEE Comput. Mag. 49(11), 38–48 (2016)CrossRefGoogle Scholar
- 49.A. Page, M.K. Aktas, T. Soyata, W. Zareba, J. Couderc, “QT Clock” to improve detection of QT prolongation in long QT syndrome patients. Heart Rhythm 13(1), 190–198 (2016)CrossRefGoogle Scholar
- 50.H.S. Mousavi, V. Monga, G. Rao, A.U.K. Rao, et al., Automated discrimination of lower and higher grade gliomas based on histopathological image analysis. J. Pathol. Inform. 6(1), 15 (2015)CrossRefGoogle Scholar
- 51.E. Ataer-Cansizoglu, V. Bolon-Canedo, J.P. Campbell, A. Bozkurt, D. Erdogmus, J. Kalpathy-Cramer, S. Patel, K. Jonas, R.V.P. Chan, S. Ostmo, et al., Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the “i-ROP” system and image features associated with expert diagnosis. Transl. Vis. Sci. Technol. 4(6), 5–5 (2015)CrossRefGoogle Scholar
- 52.I. Bisio, F. Lavagetto, M. Marchese, A. Sciarrone, A smartphone-centric platform for remote health monitoring of heart failure. Int. J. Commun. Syst. 28(11), 1753–1771 (2015)CrossRefGoogle Scholar
- 53.M. Bsoul, H. Minn, L. Tamil, Apnea MedAssist: real-time sleep apnea monitor using single-lead ECG. IEEE Trans. Inf. Technol. Biomed. 15(3), 416–427 (2011)CrossRefGoogle Scholar
- 54.D. Zhou, J. Luo, V.M.B. Silenzio, Y. Zhou, J. Hu, G. Currier, H.A. Kautz, Tackling mental health by integrating unobtrusive multimodal sensing, in AAAI, 1401–1409 (2015)Google Scholar
- 55.D.C. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Mitosis detection in breast cancer histology images with deep neural networks, in International Conference on Medical Image Computing and Computer-assisted Intervention (Springer, Berlin, 2013), pp. 411–418Google Scholar
- 56.H. Chen, X. Qi, L. Yu, P.A. Heng, DCAN: deep contour-aware networks for accurate gland segmentation (2016). Preprint arXiv:1604.02677Google Scholar
- 57.V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, et al., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)CrossRefGoogle Scholar
- 58.S. Kiranyaz, T. Ince, M. Gabbouj, Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2016)CrossRefGoogle Scholar
- 59.H.C. Shin, K. Roberts, L. Lu, D. Demner-Fushman, J. Yao, R.M. Summers, Learning to read chest X-rays: recurrent neural cascade model for automated image annotation (2016). Preprint arXiv:1603.08486Google Scholar
- 60.Q. Li, R.G. Mark, G.D. Clifford, Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol. Meas. 29(1), 15 (2007)CrossRefGoogle Scholar
- 61.R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)MathSciNetCrossRefGoogle Scholar
- 62.R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. J. Basic Eng. 83(1), 95–108 (1961)MathSciNetCrossRefGoogle Scholar
- 63.P. Schulam, S. Saria, A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure, in Advances in Neural Information Processing Systems (2015), pp. 748–756Google Scholar
- 64.H. Neuvirth, M. Ozery-Flato, J. Hu, J. Laserson, M.S. Kohn, S. Ebadollahi, M. Rosen-Zvi, Toward personalized care management of patients at risk: the diabetes case study, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2011), pp. 395–403Google Scholar
- 65.J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, Deep neural nets as a method for quantitative structure–activity relationships. J. Chem. Inf. Model. 55(2), 263–274 (2015)CrossRefGoogle Scholar
- 66.Y. Gordienko, S. Stirenko, Y. Kochura, O. Alienin, M. Novotarskiy, N. Gordienko, Deep learning for fatigue estimation on the basis of multimodal human-machine interactions (2017). Preprint arXiv:1801.06048Google Scholar
- 67.D.S. Zois, M. Levorato, U. Mitra, Energy-efficient, heterogeneous sensor selection for physical activity detection in wireless body area networks. IEEE Trans. Signal Process. 61(7), 1581–1594 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 68.U. Mitra, B.A. Emken, S. Lee, M. Li, V. Rozgic, G. Thatte, H. Vathsangam, D.S. Zois, M. Annavaram, S. Narayanan, M. Levorato, D. Spruijt-Metz, G. Sukhatme, KNOWME: a case study in wireless body area sensor network design. IEEE Commun. Mag. 50(5), 116–125 (2012)CrossRefGoogle Scholar
- 69.J. Hoey, C. Boutilier, P. Poupart, P. Olivier, A. Monk, A. Mihailidis, People, sensors, decisions: customizable and adaptive technologies for assistance in healthcare. ACM Trans. Interactive Intell. Syst. 2(4), 1–36 (2012)CrossRefGoogle Scholar
- 70.P. Paredes, R. Gilad-Bachrach, M. Czerwinski, A. Roseway, K. Rowan, J. Hernandez, PopTherapy: coping with stress through pop-culture, in Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2014), pp. 109–117Google Scholar
- 71.M. Rabbi, M.H. Aung, T. Choudhury, Towards health recommendation systems: an approach for providing automated personalized health feedback from mobile data, in Mobile Health (Springer, Berlin, 2017), pp. 519–542Google Scholar
- 72.I. Sundin, T. Peltola, M.M. Majumder, P. Daee, M. Soare, H. Afrabandpey, C. Heckman, S. Kaski, P. Marttinen, Improving drug sensitivity predictions in precision medicine through active expert knowledge elicitation (2017). Preprint arXiv:1705.03290Google Scholar
- 73.D. Chou, Health it and patient safety: building safer systems for better care. JAMA 308(21), 2282–2282 (2012)CrossRefGoogle Scholar
- 74.A.A. Bui, W. Hsu, Medical data visualization: toward integrated clinical workstations, in Medical Imaging Informatics (Springer, Berlin, 2010), pp. 139–193Google Scholar
- 75.F. Jager, A. Taddei, G.B. Moody, M. Emdin, G. Antolič, R. Dorn, A. Smrdel, C. Marchesi, R.G. Mark, Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med. Biol. Eng. Comput. 41(2), 172–182 (2003)CrossRefGoogle Scholar
- 76.A. Golberger, L. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R. Mark, J. Mietus, G. Moody, P. Chung-Kan, H. Stenley, Physiobank, physiotoolkit, and physionet: component of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)Google Scholar
- 77.K. Xu, S. Guo, N. Cao, D. Gotz, A. Xu, H. Qu, Z. Yao, Y. Chen, ECGLens: interactive visual exploration of large scale ECG data for arrhythmia detection, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18) (ACM, New York, 2018), Paper 663, 12 pp. https://doi.org/10.1145/3173574.3174237
- 78.C.A. Christmann, G. Zolynski, A. Hoffmann, G. Bleser, Effective visualization of long term health data to support behavior change, in Digital Human Modeling. Applications in Health, Safety, Ergonomics, and Risk Management: Health and Safety. DHM 2017, ed. by V. Duffy. Lecture Notes in Computer Science, vol. 10287 (Springer, Cham, 2017)CrossRefGoogle Scholar
- 79.C.A. Christmann, G. Zolynski, A. Hoffmann, G. Bleser, Effective visualization of long term health data to support behavior change, in International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (Springer, Berlin, 2017), pp. 237–247Google Scholar
- 80.A. Cuttone, M.K. Petersen, J.E. Larsen, Four data visualization heuristics to facilitate reflection in personal informatics, in International Conference on Universal Access in Human-Computer Interaction (Springer, Berlin, 2014), pp. 541–552Google Scholar
- 81.S. Theis, P. Rasche, C. Bröhl, M. Wille, A. Mertens, User-driven semantic classification for the analysis of abstract health and visualization tasks, in International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (Springer, Berlin, 2017), pp. 297–305Google Scholar
- 82.K. Tollmar, F. Bentley, C. Viedma, Mobile health mashups: making sense of multiple streams of wellbeing and contextual data for presentation on a mobile device, in 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (IEEE, Piscataway, 2012), pp. 65–72Google Scholar
- 83.S. Stusak, A. Tabard, F. Sauka, R.A. Khot, A. Butz, Activity sculptures: exploring the impact of physical visualizations on running activity. IEEE Trans. Vis. Comput. Graph. 20(12), 2201–2210 (2014)CrossRefGoogle Scholar
- 84.C. Fan, J. Forlizzi, A.K. Dey, A spark of activity: exploring informative art as visualization for physical activity, in Proceedings of the 2012 ACM Conference on Ubiquitous Computing (ACM, New York, 2012), pp. 81–84Google Scholar
- 85.R.A. Khot, D. Aggarwal, R. Pennings, L. Hjorth, F. Mueller, Edipulse: investigating a playful approach to self-monitoring through 3D printed chocolate treats, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (ACM, New York, 2017), pp. 6593–6607Google Scholar
- 86.F. Jonathan, J. Sonin, hGraph: an open system for visualizing personal health metrics. Involution Studios, Arlington, Tech. Rep. (April 2012)Google Scholar
- 87.A. Ledesma, M. Al-Musawi, H. Nieminen, Health figures: an open source javascript library for health data visualization. BMC Med. Inform. Decis. Mak. 16(1), 38 (2016)Google Scholar
- 88.D. Estrin, I. Sim, Open mHealth architecture: an engine for health care innovation. Science 330(6005), 759–760 (2010)CrossRefGoogle Scholar
- 89.A.A. Bui, D.R. Aberle, H. Kangarloo, Timeline: visualizing integrated patient records. IEEE Trans. Inf. Technol. Biomed. 11(4), 462–473 (2007)CrossRefGoogle Scholar
- 90.J. Plourde, D. Arney, J.M. Goldman, OpenICE: an open, interoperable platform for medical cyber-physical systems, in 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (IEEE, Piscataway, 2014), pp. 221–221Google Scholar
- 91.R. Kamaleswaran, C. Collins, A. James, C. McGregor, PhysioEx: visual analysis of physiological event streams, in Computer Graphics Forum, vol. 35 (Wiley Online Library, 2016), pp. 331–340Google Scholar
- 92.B. Maradani, H. Levkowitz, The role of visualization in tele-rehabilitation: a case study, in 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence (IEEE, Piscataway, 2017), pp. 643–648Google Scholar
- 93.S.H. Koch, C. Weir, D. Westenskow, M. Gondan, J. Agutter, M. Haar, D. Liu, M. Görges, N. Staggers, Evaluation of the effect of information integration in displays for ICU nurses on situation awareness and task completion time: a prospective randomized controlled study. Int. J. Med. Inform. 82(8), 665–675 (2013)CrossRefGoogle Scholar
- 94.H. Almohri, L. Cheng, D. Yao, H. Alemzadeh, On threat modeling and mitigation of medical cyber-physical systems, in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (IEEE, Piscataway, 2017), pp. 114–119Google Scholar
- 95.G. Grispos, W.B. Glisson, K.K.R. Choo, Medical cyber-physical systems development: a forensics-driven approach, in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (IEEE, Piscataway, 2017), pp. 108–113Google Scholar
- 96.N. Mowla, I. Doh, K. Chae, Evolving neural network intrusion detection system for MCPS, in 2017 19th International Conference on Advanced Communication Technology (ICACT) (IEEE, Piscataway, 2017), pp. 183–187Google Scholar
- 97.A. Boddy, W. Hurst, M. Mackay, A. El Rhalibi, A study into data analysis and visualisation to increase the cyber-resilience of healthcare infrastructures, in Proceedings of the 1st International Conference on Internet of Things and Machine Learning (IML ’17) (ACM, New York, 2017), Article 32, 7 pp. https://doi.org/10.1145/3109761.3109793