Advertisement

Applications and PV/T Systems

  • Ali H. A. Al-Waeli
  • Hussein A. Kazem
  • Miqdam Tariq Chaichan
  • Kamaruzzaman Sopian
Chapter

Abstract

This chapter provides a description of the current state of the global solar thermal industry and market along with future possibilities of research and development in the PV/T industry. An outline for the criteria of technical, economic, and environmental performance of PV/T systems is laid out. Various conventional and novel designs of PV/T systems are revisited and studied as theoretical and practical studies. The various configurations of PV/T collectors such as grid-connected PV/T (GCPV/T) and building-integrated PV/T (BIPV/T) are discussed as well. Commercial and industrial solutions and initiative are PV and PV/T systems which are discussed with emphasis on examining the difficulties and barriers associated with delay of PV/T proliferation. Finally, the commercial PV/T products, and PV/T applications, installed by different companies are displayed.

Keywords

Building-integrated PV/T Grid-connected PV/T PV/T applications PV/T industry 

References

  1. 1.
    Energy – Consumption “Consumption by fuel, 1965–2008” (XLS), Statistical Review of World Energy 2009, BP. 31 July 2006. Accessed 24 Oct 2009Google Scholar
  2. 2.
    Global Energy Review (Enerdata Publication, 2009)Google Scholar
  3. 3.
    Global warming (2011), http://en.wikipedia.org/wiki/Globalwarming. Accessed 2 Nov 2011
  4. 4.
    “Renewables in global energy supply: an IEA facts sheet”, IEA/OECD; 2007.Google Scholar
  5. 5.
    Solar heating and cooling for a sustainable energy future in Europe (Revised), European solar thermal technology platform (ESTTP) (2009), http://www.estif.org/fileadmin/estif/content/projects/downloads/ESTTPSRARevisedVersion.pdf
  6. 6.
    X. Zhang, X. Zhao, S. Smith, J. Xu, X. Yu, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew. Sustain. Energy Rev. 16, 599–617 (2012)CrossRefGoogle Scholar
  7. 7.
    Solar thermal action plan for Europe: heating and cooling from the Sun, European Solar Thermal Industry Federation (ESTIF), http://www.estif.org/fileadmin/estif/content/policies/STAP/SolarThermalActionPlan2007A4.pdf (2007)
  8. 8.
    Technology Roadmap-Solar photovoltaic energy, International Energy Agency, http://www.iea-pvps.org (2010)
  9. 9.
    H.M.S. Al-Maamary, H.A. Kazem, M.T. Chaichan, Changing the energy profile of the GCC states: A review. Int. J. Appl. Eng. Res. 11(3), 1980–1988 (2016)Google Scholar
  10. 10.
    A.H.A. Al-Waeli, K. Sopian, H.A. Kazem, M.T. Chaichan, PV/T (photovoltaic/thermal): status and future prospects. Renew. Sustain. Energy Rev. 77, 109–130 (2017)CrossRefGoogle Scholar
  11. 11.
    R. Komp, T. Reeser, Design, construction and operation of a PV/Hot air hybrid energy system, in ISES Solar World Congress, 1987Google Scholar
  12. 12.
    B. Moshtegh, M. Sandbergy, Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, Part I–numerical study. Renew. Energy 8, 248–253 (1996)CrossRefGoogle Scholar
  13. 13.
    M. Sandbergy, B. Moshtegh, Investigation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, Part II – experimental study. Renew. Energy 8, 254–258 (1996)CrossRefGoogle Scholar
  14. 14.
    K.S. Sopian, H.T. Yigit, H.T. Liu, S. Kakac, T.N. Veziroglu, Performance analysis of photovoltaic/thermal air heaters. Energ. Conver. Manage. 37(11), 1657–1670 (1996)CrossRefGoogle Scholar
  15. 15.
    J. Ji, T.-T. Chow, W. He, Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong. Build. Environ. 38, 1327–1334 (2003)CrossRefGoogle Scholar
  16. 16.
    J.K. Tonui, Y. Tripanagnostopoulos, Performance improvement of PV/T solar collectors with natural air flow operation. Sol. Energy 82, 1–12 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Shahsavar, M. Ameri, Experimental investigation and modeling of a direct coupled PV/T air collector. Sol. Energy 84, 1938–1958 (2010)CrossRefGoogle Scholar
  18. 18.
    B.J. Huang, Performance rating method of thermosyphon solar water heaters. Sol. Energy 50, 435–440 (1993)CrossRefGoogle Scholar
  19. 19.
    R.K. Agarwal, H.P. Garg, Study of a photovoltaic–thermal system – thermosyphonic solar water heater combined with solar cells. Energ. Conver. Manage. 35(7), 605–620 (1994)CrossRefGoogle Scholar
  20. 20.
    H.P. Grag, R.K. Agarwal, Some aspects of a PV/T collector/forced circulation flat-plat solar water heater with solar cells. Energ. Conver. Manage. 36, 87–99 (1995)CrossRefGoogle Scholar
  21. 21.
    T. Bergene, O.M. Lovvik, Model calculations on a flat plate solar heat collector with integrated solar cells. Sol. Energy 55(6), 453–462 (1995)CrossRefGoogle Scholar
  22. 22.
    S.A. Kalogirou, Use of TRNSYS for modelling and simulation of a hybrid PV–thermal solar system for Cyprus. Renew. Energy 23, 247–260 (2001)CrossRefGoogle Scholar
  23. 23.
    M.D. Bazilian, H. Kamalanathan, D.K. Prasad, Thermographic analysis of a building integrated photovoltaic system. Renew. Energy 26, 449–461 (2002)CrossRefGoogle Scholar
  24. 24.
    T.T. Chow, W. He, J. Ji, Hybrid photovoltaic-thermosyphon water heating system for residential application. Sol. Energy 80, 298–306 (2006)CrossRefGoogle Scholar
  25. 25.
    T.T. Chow, W. He, J. Ji, An experimental study of facade-integrated photovoltaic/water-heating system. Appl. Therm. Eng. 27, 37–45 (2007)CrossRefGoogle Scholar
  26. 26.
    S. Dubey, A.A.O. Tay, Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy Sustain. Dev. 17, 1–12 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Jouhara, M. Szulgowska-Zgrzywa, M.A. Sayegh, J. Milko, J. Danielewicz, T.K. Nannou, S.P. Lester, The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications. Energy 136, 117–125 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Nishikawa, T. Sone, S. Ito, A heat pump using solar hybrid panels as the evaporator, in ISES Solar World Congress, 1993Google Scholar
  29. 29.
    X. Zhao, X. Zhang, S.B. Riffat, X. Su, Theoretical investigation of a novel PV/e roof module for heat pump operation. Energ. Conver. Manage. 52, 603–614 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Moradgholi, S.M. Nowee, I. Abrishamchi, Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system. Sol. Energy 107, 82–88 (2014)CrossRefGoogle Scholar
  31. 31.
    T. Yousefi, F. Veysi, E. Shojaeizadeh, S. Zinadini, An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 39, 293–298 (2012)CrossRefGoogle Scholar
  32. 32.
    N. Karami, M. Rahimi, Heat transfer enhancement in a PV cell using Boehmite nanofluid. Energ. Conver. Manage. 86, 275–285 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Sardarabadi, M. Passandideh-Fard, S.Z. Heris, Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy 66, 264–272 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Hassani, R. Saidur, S. Mekhilef, R.A. Taylor, Environmental and exergy benefit of nanofluid-based hybrid PV/T systems. Energ. Conver. Manage. 123(1), 431–444 (2016)CrossRefGoogle Scholar
  35. 35.
    D. Jing, Y. Hu, M. Liu, J. Wei, L. Guo, Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system. Sol. Energy 112, 30–40 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Ghadiri, M. Sardarabadi, M. Pasandideh-fard, A.J. Moghadam, Experimental investigation of a PVT system performance using nano ferrofluids. Energ. Conver. Manage. 103, 468–476 (2015)CrossRefGoogle Scholar
  37. 37.
    A.N. Al-Shamani, K. Sopian, S. Mat, H.A. Hasan, A.M. Abed, M.H. Ruslan, Experimental studies of rectangular tube absorber PV thermal collector with various types of nanofluids under the tropical climate conditions. Energ. Conver. Manage. 124, 528–542 (2016)CrossRefGoogle Scholar
  38. 38.
    A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazem, K. Sopian, Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energ. Conver. Manage. 148(15), 963–973 (2017)CrossRefGoogle Scholar
  39. 39.
    A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, et al., An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energ. Conver. Manage. 142, 547–558 (2017)CrossRefGoogle Scholar
  40. 40.
    A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazem, K. Sopian, A. Ibrahim, S. Mat, M.H. Ruslan, Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant. Energy 151, 33e44 (2018)CrossRefGoogle Scholar
  41. 41.
    S. Aberoumand, S. Ghamari, B. Shabani, Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Sol. Energy 165, 167–177 (2018)CrossRefGoogle Scholar
  42. 42.
    A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant. Case Stud. Therm. Eng. 13, 100340 (2019)CrossRefGoogle Scholar
  43. 43.
    A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazem, K. Sopian, Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems. Case Stud. Therm. Eng. 13, 100392 (2019)CrossRefGoogle Scholar
  44. 44.
    A. Hasan, S.J. McCormack, M.J. Huang, B. Norton, Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 84, 1601–1612 (2010)CrossRefGoogle Scholar
  45. 45.
    M.J. Huang, The effect of using two PCMs on the thermal regulation performance of BIPV systems. Sol Energy Mater Solar Cells 95, 957–963 (2011)CrossRefGoogle Scholar
  46. 46.
    M.J. Huang, P.C. Eames, B. Norton, N.J. Hewitt, Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol. Energy Mater. Sol. Cells 95, 1598–1603 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Maiti, S. Banerjee, K. Vyas, P. Patel, P.K. Ghosh, Self-regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Sol. Energy 85, 1805–1816 (2011)CrossRefGoogle Scholar
  48. 48.
    A. Hassan, H. Nouman, A. Assi, B. Norton, Temperature regulation and thermal energy storage potential of phase change materials layer contained at the back of a building integrated photovoltaic panel, in Proceedings of the 30th International Plea Conference, 2014, pp. 16–18Google Scholar
  49. 49.
    A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, A. Ibrahim, S. Mat, M.H. Ruslan, Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energ. Conver. Manage. 151, 693–708 (2017)CrossRefGoogle Scholar
  50. 50.
    S.D. Hendrie, Evaluation of combined photovoltaic/thermal collectors, in ISES International Congress and Silver Jubilee, 1980, p. 1865–1869.Google Scholar
  51. 51.
    C.H. Cox, P. Raghuraman, Design considerations for flat-plate photovoltaic/thermal collectors. Sol. Energy 35(3), 227–241 (1985)CrossRefGoogle Scholar
  52. 52.
    H.P. Grag, R.K. Agarwal, Some aspects of a PV/T collector/forced circulation flat-plat solar water heater with solar cells. Energy Convers. Manage. 36, 87–99 (1995)CrossRefGoogle Scholar
  53. 53.
    Y. Gu, X. Zhang, J.A. Myhren, M. Han, X. Chen, Y. Yu, Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method. Energ. Conver. Manage. 165, 8–24 (2018)CrossRefGoogle Scholar
  54. 54.
    M.E.A. Alfegi, K. Sopian, M.Y.H. Othman, B.B. Yatim, Transient mathematical model of both side single pass photovoltaic thermal air collector. ARPN J. Eng. Appl. Sci. 2, 22–26 (2007)Google Scholar
  55. 55.
    A. Ibrahim, G.L. Jin, R. Daghigh, M.H.M. Salleh, M.Y. Othman, M.H. Ruslan, et al., Hybrid photovoltaic thermal (PV/T) air and water based solar collectors suitable for building integrated applications. Am. J. Environ. Sci. 5, 618–624 (2009)CrossRefGoogle Scholar
  56. 56.
    B.J. Huang, T.H. Liu, W.C. Hung, F.S. Sun, Performance evaluation of solar photovoltaic/thermal systems. Sol. Energy 70, 443–448 (2001)CrossRefGoogle Scholar
  57. 57.
    T.T. Chow, Performance analysis of photovoltaic–thermal collector by explicit dynamic model. Sol. Energy 75(2), 143–152 (2003)CrossRefGoogle Scholar
  58. 58.
    P. Dupeyrata, C. Ménézo, S. Fortuin, Study of the thermal and electrical performances of PVT solar hot water system. Energ. Buildings 68, 751–755 (2014)CrossRefGoogle Scholar
  59. 59.
    K.-K. Tse, T.-T. Chow, Y. Su, Performance evaluation and economic analysis of a full scale water-based photovoltaic/thermal (PV/T) system in an office building. Energ. Buildings 122, 42–52 (2016)CrossRefGoogle Scholar
  60. 60.
    A. Khelifa, K. Touafek, H. Ben Moussa, I. Tabet, Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector. Sol. Energy 135, 169–176 (2016)CrossRefGoogle Scholar
  61. 61.
    J. Bigorajski, D. Chwieduk, Analysis of a micro photovoltaic/thermal (PV/T) system operation in moderate climate. Renew. Energy 137, 1–10 (2018).  https://doi.org/10.1016/j.renene.2018.01.116CrossRefGoogle Scholar
  62. 62.
    X.U. Guoying, S. Deng, X. Zhang, L. Yang, Y. Zhang, Simulation of a photovoltaic/thermal heat pump system having modified collector/evaporator. Sol. Energy 83, 1967–1976 (2009)CrossRefGoogle Scholar
  63. 63.
    S.-Y. Wu, Q.-L. Zhang, L. Xiao, F.-H. Guo, A heat pipe photovoltaic/thermal (PV/T) hybrid system and its performance evaluation. Energ. Buildings 43, 3558–3567 (2011)CrossRefGoogle Scholar
  64. 64.
    P. Gang, F. Huide, Z. Huijuan, J. Jie, Performance study and parametric analysis of a novel heat pipe PV/T system. Energy 37, 384–395 (2012)CrossRefGoogle Scholar
  65. 65.
    B. Zhang, J. Lv, H. Yang, T. Li, S. Ren, Performance analysis of a heat pipe PV/T system with different circulation tank capacities. Appl. Therm. Eng. 87, 89–97 (2015)CrossRefGoogle Scholar
  66. 66.
    H. Long, T.-T. Chow, J. Ji, Building-integrated heat pipe photovoltaic/thermal system for use in Hong Kong. Sol. Energy 155, 1084–1091 (2017)CrossRefGoogle Scholar
  67. 67.
    Y. Khanjari, F. Pourfayaz, A.B. Kasaeian, Numerical investigation on using of nanofluid in a water-cooled PV thermal system. Energ. Conver. Manage. 122, 263–278 (2016)CrossRefGoogle Scholar
  68. 68.
    O. Rejeb, M. Sardarabadi, C. Ménézo, M. Passandideh-Fard, M.H. Dhaou, A. Jemni, Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energ. Conver. Manage. 110, 367–377 (2016)CrossRefGoogle Scholar
  69. 69.
    M.A. Adriana, Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. Int. J. Heat Mass Transfer 104, 852–860 (2017)CrossRefGoogle Scholar
  70. 70.
    M. Huang, P. Eames, B. Norton, Comparison of predictions made using a new 3D phase change material thermal control model with experimental measurements and predictions made using a validated 2D model. Heat Transfer Eng. 28, 31–37 (2007)CrossRefGoogle Scholar
  71. 71.
    M. Cellura, V.L. Brano, A. Marvuglia A Heat Transfer Eng. Photovoltaic panel coupled with a phase changing material heat storage system in hot climates, in PLEA 2008 – 25th conference on passive and low energy architecture, Dublin, IrelandGoogle Scholar
  72. 72.
    J.H.C. Hendricks, W.G.J.H.M. Sark, Annual performance enhancement of building integrated photovoltaic modules by applying phase change materials. Progr. Photovolt. 21, 620–630 (2013)Google Scholar
  73. 73.
    V.L. Brano, G. Ciulla, A. Piacentino, F. Cardona, On the efficacy of PCM to shave peak temperature of crystalline photovoltaic panels: an FDM model and field validation. Energies 6, 6188–6210 (2013)CrossRefGoogle Scholar
  74. 74.
    V.L. Brano, G. Ciulla, A. Piacentino, F. Cardona, Finite difference thermal model of a latent heat storage system coupled with a photovoltaic device: description and experimental validation. Renew. Energy 68, 181–193 (2014)CrossRefGoogle Scholar
  75. 75.
    A. Machniewicz, D. Knera, D. Heim, Effect of transition temperature on efficiency of PV/PCM panels. Energy Procedia 78, 1684–1689 (2015)CrossRefGoogle Scholar
  76. 76.
    A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, H.B. Mahood, A.A. Khadom, Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Sol. Energy 177, 178–191 (2019)CrossRefGoogle Scholar
  77. 77.
  78. 78.
    SolarVenti (2010), http://www.solarventi.com. Accessed 20 Dec 2010
  79. 79.
    Solar Wall (2010), http://solarwall.com/en/home.php. Accessed 20 Dec 2010
  80. 80.
    MULTI SOLAR PV/T System (2010), http://www.millenniumsolar.com. Accessed 20 Dec 2010
  81. 81.
    Solar Collector X10 (2010), http://www.absolicon.com. Accessed 20 Dec 2010
  82. 82.
    PV/T examples (2010), http://www.iea-shc.org/task35/examples.htm. Accessed 11 Oct 2010
  83. 83.
    P. Barnwal, G.N. Tiwari, Life cycle energy metrics and CO2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer. Int. J. Low Carbon Technol 3(3), 203–220 (2019)CrossRefGoogle Scholar
  84. 84.
    T.T. Chow, J.W. Hand, P.A. Strachan, Building-integrated photovoltaic and thermal applications in a subtropical hotel building. Appl. Therm. Eng. 23, 2035–2049 (2003)CrossRefGoogle Scholar
  85. 85.
    S.A. Kalogirou, Y. Tripanagnostopoulos, Industrial application of PV/T solar energy systems. Appl. Therm. Eng. 27, 1259–1270 (2007)CrossRefGoogle Scholar
  86. 86.
    I. Farkas, I. Seres, C.S. Meszaros, Analytical and experimental study of a modular solar dryer’. Renew. Energy 16, 773–778 (1999)CrossRefGoogle Scholar
  87. 87.
    J. Mumba, Development of a photovoltaic powered forced circulation grain dryer for use in the tropics. Renew. Energy 6, 855–862 (1995)CrossRefGoogle Scholar
  88. 88.
    J. Mumba, Design and development of a solar grain dryer incorporating photovoltaic powered air circulation. Energ. Conver. Manage. 37, 615–621 (1996)CrossRefGoogle Scholar
  89. 89.
    A. Tiwari, M.S. Sodha, Parametric study of various configurations of hybrid PV/thermal air collector: experimental validation of theoretical model. Sol. Energy Mater. Sol. Cells 91, 17–28 (2006)CrossRefGoogle Scholar
  90. 90.
    Solar Energy Research Institute, Malaysia, http://www.ukm.edu.my/seri. Accessed 1 Feb 2019
  91. 91.
    M. Bosanac, B. Sorensen, K. Ivan, H. Sorensen, N. Bruno, B. Jamal, Photovoltaic/thermal solar collectors and their potential in Denmark (2003). Final Report, EFP Project, www.solenergi.dk/rapporter/pvtpotentialindenmark

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ali H. A. Al-Waeli
    • 1
  • Hussein A. Kazem
    • 2
  • Miqdam Tariq Chaichan
    • 3
  • Kamaruzzaman Sopian
    • 1
  1. 1.Solar Energy Research InstituteUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of EngineeringSohar UniversitySoharOman
  3. 3.Energy and Renewable Energies Technology CenterUniversity of TechnologyBaghdadIraq

Personalised recommendations