Advertisement

PV/T Principles and Design

  • Ali H. A. Al-Waeli
  • Hussein A. Kazem
  • Miqdam Tariq Chaichan
  • Kamaruzzaman Sopian
Chapter

Abstract

The core of the book is to explain the theory and applications of Photovoltaic Thermal (PV/T) collectors which is provided in this chapter. The concepts and components of PV/T are illustrated as well as energy efficiency calculations. The case for using PV/T collectors is stated and followed by the rationale in terms of the combined efficiency per unit area and the cost-effectiveness of this technology. An overview with description of the chronology of PV/T and classifications is provided. In addition, the main aim and various design considerations were discussed for optimum design and testing of PV/T systems. Electrical and thermal analysis of PV/T collectors for different parameters was investigated through a brief literature review. While extensive literature review was carried out to explain the various aspects of passive PV cooling systems and different classifications of PV/T collectors which include air-based, water-based, air- and water-based, refrigerant-based PV/T collectors, a breakdown of the various passage flow configurations of PV/T absorbers and geometries is provided as well. The research methodologies in PV/T literature are introduced from different research works throughout the literature. Finally, the energy and exergy analysis of typical PV/T collectors is provided.

Keywords

Photovoltaic thermal (PV/T) Air-based PV/T Water-based PV/T Bifacial PV/T Exergy analysis 

References

  1. 1.
    P.G. Charalambous, G.G. Maidment, S.A. Kalogirou, K. Yiakoumetti, Photovoltaic thermal (PV/T) collectors: A review. Appl. Therm. Eng. 27(2–3), 275–286 (2007)CrossRefGoogle Scholar
  2. 2.
    E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 83(5), 614–624 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Dubey, J.N. Sarvaiya, B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia 33, 311–321 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Royne, C.J. Dey, D.R. Mills, Cooling of photovoltaic cells under concentrated illumination: A critical review. Sol. Energy Mater. Sol. Cells 86(4), 451–483 (2005)CrossRefGoogle Scholar
  5. 5.
    V.L. Dalal, A.R. Moore, Design considerations for high-intensity solar cells. J. Appl. Phys. 48(3), 1244–1251 (1977)CrossRefGoogle Scholar
  6. 6.
    R. Daghigh, M.H. Ruslan, K. Sopian, Advances in liquid based photovoltaic/thermal (PV/T) collectors. Renew. Sust. Energ. Rev. 15(8), 4156–4170 (2011)CrossRefGoogle Scholar
  7. 7.
    A. Fudholi, K. Sopian, M.H. Yazdi, M.H. Ruslan, A. Ibrahim, H.A. Kazem, Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers. Manag. 78, 641–651 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Yazdanifard, M. Ameri, Exergetic advancement of photovoltaic/thermal systems (PV/T): A review. Renew. Sust. Energ. Rev. 97, 529–553 (2018)CrossRefGoogle Scholar
  9. 9.
    H.A. Kazem, Evaluation and analysis of water-based photovoltaic/thermal (PV/T) system. Case Stud. Therm. Eng. 13, 100401 (2019)CrossRefGoogle Scholar
  10. 10.
    M.S. Hossain, A.K. Pandey, J. Selvaraj, N.A. Rahim, A. Rivai, V.V. Tyagi, Thermal performance analysis of parallel serpentine flow based photovoltaic/thermal (PV/T) system under composite climate of Malaysia. Appl. Therm. Eng. 153, 861–871 (2019)CrossRefGoogle Scholar
  11. 11.
    E. Lorenzo, Solar Electricity: Engineering of Photovoltaic Systems (Earthscan/James & James, Spain, 1994)Google Scholar
  12. 12.
    E. Radziemska, Performance analysis of a photovoltaic-thermal integrated system. Int. J. Photoenergy (2009)Google Scholar
  13. 13.
    T.T. Chow, J.W. Hand, P.A. Strachan, Building-integrated photovoltaic and thermal applications in a subtropical hotel building. Appl. Therm. Eng. 23(16), 2035–2049 (2003)CrossRefGoogle Scholar
  14. 14.
    E. Radziemska, The effect of temperature on the power drop in crystalline silicon solar cells. Renew. Energy 28(1), 1–12 (2003)CrossRefGoogle Scholar
  15. 15.
    M. Lämmle, A. Oliva, M. Hermann, K. Kramer, W. Kramer, PVT collector technologies in solar thermal systems: A systematic assessment of electrical and thermal yields with the novel characteristic temperature approach. Sol. Energy 155, 867–879 (2017)CrossRefGoogle Scholar
  16. 16.
    N.J. Regnier, L.W. Schmidt, D.E. Kefes; Hoffman Electronics Corp, Solar energy converting apparatus or the like. U.S. Patent 2,946,945 (1960)Google Scholar
  17. 17.
    R.H. Dean, L.S. Napoli, S.G. Liu; RCA Corp, Method of fabricating a photovoltaic device. U.S. Patent 3,999,283 (1976)Google Scholar
  18. 18.
    P.F. Varadi; Solarex Corp, Panel for solar energy cells. U.S. Patent 4,056,405 (1977)Google Scholar
  19. 19.
    A. Kirpich, Conceptual Design and Systems Analysis of Photovoltaic Power Systems (Energy Research and Development Administration, 1977)Google Scholar
  20. 20.
    E.C. Kern Jr, M.C. Russell, Combined photovoltaic and thermal hybrid collector systems (No. COO-4577-3; CONF-780619-24). Massachusetts Inst. of Tech., Lexington (USA). Lincoln Lab (1978)Google Scholar
  21. 21.
    L.W. Florschuetz, Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Sol. Energy 22(4), 361–366 (1979)CrossRefGoogle Scholar
  22. 22.
    P. Raghuraman, Analytical predictions of liquid and air photovoltaic/thermal, flat-plate collector performance. J. Sol. Energy Eng. 103(4), 291–298 (1981)CrossRefGoogle Scholar
  23. 23.
    B. Lalović, Z. Kiss, H. Weakliem, A hybrid amorphous silicon photovoltaic and thermal solar collector. Sol. Cells 19(2), 131–138 (1986)CrossRefGoogle Scholar
  24. 24.
    H.P. Garg, R.K. Agarwal, Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Convers. Manag. 36(2), 87–99 (1995)CrossRefGoogle Scholar
  25. 25.
    C.F. Johnson, Solar concentrator for heat and electricity. U.S. Patent 6,080,927 (2000)Google Scholar
  26. 26.
    T. Bergene, O.M. Løvvik, Model calculations on a flat-plate solar heat collector with integrated solar cells. Sol. Energy 55(6), 453–462 (1995)CrossRefGoogle Scholar
  27. 27.
    J. Coventry, Simulation of a concentrating PV/thermal collector using TRNSYS. Conference paper (ANU Research Publications, 2002). http://hdl.handle.net/1885/40836, http://digitalcollections.anu.edu.au/handle/1885/40836
  28. 28.
    A. Khelifa, K. Touafek, H.B. Moussa, Approach for the modelling of hybrid photovoltaic–thermal solar collector. IET Renew. Power Gener. 9(3), 207–217 (2014)CrossRefGoogle Scholar
  29. 29.
    F. Sarhaddi, S. Farahat, H. Ajam, A.M.I.N. Behzadmehr, M.M. Adeli, An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl. Energy 87(7), 2328–2339 (2010)CrossRefGoogle Scholar
  30. 30.
    P. Gang, F. Huide, Z. Tao, J. Jie, A numerical and experimental study on a heat pipe PV/T system. Sol. Energy 85(5), 911–921 (2011)CrossRefGoogle Scholar
  31. 31.
    E. Cuce, T. Bali, S.A. Sekucoglu, Effects of passive cooling on performance of silicon photovoltaic cells. Int. J. Low Carbon Technol. 6(4), 299–308 (2011)CrossRefGoogle Scholar
  32. 32.
    S.K. Natarajan, T.K. Mallick, M. Katz, S. Weingaertner, Numerical investigations of solar cell temperature for photovoltaic concentrator system with and without passive cooling arrangements. Int. J. Therm. Sci. 50(12), 2514–2521 (2011)CrossRefGoogle Scholar
  33. 33.
    K. Araki, H. Uozumi, M. Yamaguchi, A simple passive cooling structure and its heat analysis for 500/spl times/concentrator PV module. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference (IEEE, May 2002), pp. 1568–1571Google Scholar
  34. 34.
    J.K. Tonui, Y. Tripanagnostopoulos, Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renew. Energy 32(4), 623–637 (2007)CrossRefGoogle Scholar
  35. 35.
    J.G. Ahn, J.H. Kim, J.T. Kim, A study on experimental performance of air-type PV/T collector with HRV. Energy Procedia 78, 3007–3012 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Hu, W. Chen, D. Yang, B. Zhao, H. Song, B. Ge, Energy performance of ETFE cushion roof integrated photovoltaic/thermal system on hot and cold days. Appl. Energy 173, 40–51 (2016)CrossRefGoogle Scholar
  37. 37.
    E.D. Rounis, A.K. Athienitis, T. Stathopoulos, Multiple-inlet Building Integrated Photovoltaic/Thermal system modelling under varying wind and temperature conditions. Sol. Energy 139, 157–170 (2016)CrossRefGoogle Scholar
  38. 38.
    J.H. Kim, S.H. Park, J.T. Kim, Experimental performance of a photovoltaic-thermal air collector. Energy Procedia 48, 888–894 (2014)CrossRefGoogle Scholar
  39. 39.
    G. Ömeroğlu, CFD analysis and electrical efficiency improvement of a hybrid PV/T panel cooled by forced air circulation. Int. J. Photoenergy 2018(12), 1–11 (2018)CrossRefGoogle Scholar
  40. 40.
    J.C. Mojumder, W.T. Chong, H.C. Ong, K.Y. Leong, An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energ. Buildings 130, 272–285 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Dubey, G.S. Sandhu, G.N. Tiwari, Analytical expression for electrical efficiency of PV/T hybrid air collector. Appl. Energy 86(5), 697–705 (2009)CrossRefGoogle Scholar
  42. 42.
    G. Jin, H. Ruslan, S. Mat, M.Y. Othman, A. Zaharim, K. Sopian, Experiment study on single-pass photovoltaic-thermal (PV/T) air collector with absorber. In 9th WSEAS International Conference on System Science and Simulation in Engineering, ICOSSSE'10 (October 2010), pp. 435–438Google Scholar
  43. 43.
    S.M. Sultan, C.P. Tso, A thermal performance study for different glazed water based photovoltaic thermal collectors. In AIP Conference Proceedings, Vol. 2030, No. 1 (AIP Publishing, November 2018), p. 020307Google Scholar
  44. 44.
    L. Lu, X. Wang, S. Wang, X. Liu, Analysis of three different sheet-and-tube water-based flat-plate PVT collectors. J. Energy Eng. 143(5), 04017022 (2017)CrossRefGoogle Scholar
  45. 45.
    A.A. Alzaabi, N.K. Badawiyeh, H.O. Hantoush, A.K. Hamid, Electrical/thermal performance of hybrid PV/T system in Sharjah, UAE. Int. J. Smart Grid Clean Energy 3(4), 385–389 (2014)Google Scholar
  46. 46.
    I. Nardi, D. Ambrosini, T. de Rubeis, D. Paoletti, M. Muttillo, S. Sfarra, Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions. In Journal of Physics: Conference Series, Vol. 923, No. 1. (IOP Publishing, November 2017), p. 012040Google Scholar
  47. 47.
    R. Liang, J. Zhang, L. Ma, Y. Li, Performance evaluation of new type hybrid photovoltaic/thermal solar collector by experimental study. Appl. Therm. Eng. 75, 487–492 (2015)CrossRefGoogle Scholar
  48. 48.
    H. Jarimi, M.N.A. Bakar, N.A. Manaf, M. Othman, M. Din, Mathematical modelling of a finned bi-fluid type photovoltaic/thermal (PV/T) solar collector. In 2013 IEEE Conference on Clean Energy and Technology (CEAT) (IEEE, November 2013), pp. 163–168Google Scholar
  49. 49.
    D. Su, Y. Jia, X. Huang, G. Alva, Y. Tang, G. Fang, Dynamic performance analysis of photovoltaic–thermal solar collector with dual channels for different fluids. Energy Convers. Manag. 120, 13–24 (2016)CrossRefGoogle Scholar
  50. 50.
    A. Tiwari, M.S. Sodha, Performance evaluation of hybrid PV/thermal water/air heating system: A parametric study. Renew. Energy 31(15), 2460–2474 (2006)CrossRefGoogle Scholar
  51. 51.
    H. Jarimi, M.N.A. Bakar, M. Othman, M. Din, Bi-fluid photovoltaic/thermal PV/T solar collector with three modes of operation: Experimental validation of a theoretical model, in Mediterranean green buildings & renewable energy, (Springer, Cham, 2017), pp. 445–464CrossRefGoogle Scholar
  52. 52.
    H.L. Tsai, Design and evaluation of a photovoltaic/thermal-assisted heat pump water heating system. Energies 7(5), 3319–3338 (2014)CrossRefGoogle Scholar
  53. 53.
    J. Ji, H. He, T. Chow, G. Pei, W. He, K. Liu, Distributed dynamic modeling and experimental study of PV evaporator in a PV/T solar-assisted heat pump. Int. J. Heat Mass Transf. 52(5–6), 1365–1373 (2009)CrossRefGoogle Scholar
  54. 54.
    X. Zhao, X. Zhang, S.B. Riffat, Y. Su, Theoretical study of the performance of a novel PV/e roof module for heat pump operation. Energy Convers. Manag. 52(1), 603–614 (2011)CrossRefGoogle Scholar
  55. 55.
    M.A.M. Rosli, Y.J. Ping, S. Misha, M.Z. Akop, K. Sopian, S. Mat, A.N. Al-Shamani, M.A. Saruni, Simulation study of computational fluid dynamics on photovoltaic thermal water collector with different designs of absorber tube. J. Adv. Res. Fluid Mech. Therm. Sci. 52(1), 12–22 (2018)Google Scholar
  56. 56.
    K. Sopian, G.L. Jin, M.Y Othman, S.H. Zaidi, M.H. Ruslan, Advanced absorber design for photovoltaic thermal (PV/T) collectors. Recent Researches in Energy, Environment, and Landscape Architecture (2011)Google Scholar
  57. 57.
    M.M. Sardouei, H. Mortezapour, K.J. Naeimi, Temperature distribution and efficiency assessment of different PVT water collector designs. Sādhanā 43(6), 84 (2018)CrossRefGoogle Scholar
  58. 58.
    N.A. Manaf, A. Bakar, M. Nazari, H. Jarimi, S. Muhamed, M. Othman, Design of a single-pass bi-fluid photovoltaic/thermal (PV/T) solar collector. Int. J. Chem. Environ. Eng. 4 (2013)Google Scholar
  59. 59.
    M.S. Hossain, A.K. Pandey, J. Selvaraj, N.A. Rahim, M.M. Islam, V.V. Tyagi, Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis. Renew. Energy 136, 1320–1336 (2019)CrossRefGoogle Scholar
  60. 60.
    M.A.M. Rosli, S. Misha, K. Sopian, S. Mat, M.Y. Sulaiman, E. Salleh, Parametric analysis on heat removal factor for a flat plate solar collector of serpentine tube. World Appl. Sci. J. 29(2), 184–187 (2014)Google Scholar
  61. 61.
    A.H.M.A.D. Fudholi, A. Ibrahim, M.Y. Othman, M. Hafidz, Energy and exergy analyses on water based photovoltaic thermal (PVT) collector with spiral flow absorber. In 2nd International Conference on Energy Systems, Environment, Antalya, Turkey (October 2013), pp. 70–74Google Scholar
  62. 62.
    V.N. Palaskar, S.P. DESHMUKH, Study of oscillatory flow heat exchanger used in hybrid solar system fitted with fixed reflectors. Int. J. Ren. Energy Res. 4(4), 893–900 (2014)Google Scholar
  63. 63.
    A. Ibrahim, G.L. Jin, Hybrid Photovoltaic Thermal (PV/T) Air and Water Based Solar Collectors Suitable for Building Integrated Applications Adnan Ibrahim, Goh Li Jin, Roonak Daghigh, Mohd Huzmin Mohamed Salleh, Mohd Yusof Othman, Mohd Hafidz Ruslan, Sohif Mat and Kamaruzzaman Sopian Solar Energy Research Institute, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia. Am. J. Environ. Sci. 5(5), 618–624 (2009)CrossRefGoogle Scholar
  64. 64.
    M.R. Karim, M.A.R. Akhanda, Study of a Hybrid Photovoltaic Thermal (PVT) Solar Systems Using Different Ribbed Surfaces Opposite to Absorber Plate (2011)Google Scholar
  65. 65.
    D.İ.L.Ş.A.D. Engin, M.U.S.T.A.F.A. Engin, Simulation modelling of a photovoltaic and thermal collector (PV/T) hybrid system. In 6th International Ege Energy Symposium and Exhibition (June 2012), pp. 28–30Google Scholar
  66. 66.
    I. Guarracino, A. Mellor, N.J. Ekins-Daukes, C.N. Markides, Dynamic coupled thermal-and-electrical modelling of sheet-and-tube hybrid photovoltaic/thermal (PVT) collectors. Appl. Therm. Eng. 101, 778–795 (2016)CrossRefGoogle Scholar
  67. 67.
    M. Alobaid, B. Hughes, D. O’Connor, J. Calautit, A. Heyes, Improving thermal and electrical efficiency in photovoltaic thermal systems for sustainable cooling system integration. J. Sustain. Dev. Energy Water Environ. Syst. 6(2), 305–322 (2018)CrossRefGoogle Scholar
  68. 68.
    M.A.M. Rosli, S. Mat, H. Ruslan, K. Sopian, H.T. Jaya, Parametric study on water based photovoltaic thermal collector. In 7th International Conference on Renewable Energy Sources (RES’13) (2013), pp. 135–140Google Scholar
  69. 69.
    A.N. Al-Shamani, S. Mat, M.H. Ruslan, A.M. Abed, K. Sopian, Effect of new ellipse design on the performance enhancement of PV/T collector: CDF approach. Int. J. Environ. Sustain. 5(2) (2016)Google Scholar
  70. 70.
    L. Sun, L. Yang, L.L. Shao, C.L. Zhang, Overall thermal performance oriented numerical comparison between elliptical and circular finned-tube condensers. Int. J. Therm. Sci. 89, 234–244 (2015)CrossRefGoogle Scholar
  71. 71.
    W. He, Y. Zhang, J. Ji, Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water. Appl. Therm. Eng. 31(16), 3369–3376 (2011)CrossRefGoogle Scholar
  72. 72.
    A. Hepbasli, Exergetic modeling and assessment of solar assisted domestic hot water tank integrated ground-source heat pump systems for residences. Energ. Buildings 39(12), 1211–1217 (2007)CrossRefGoogle Scholar
  73. 73.
    A. Tiwari, S. Dubey, G.S. Sandhu, M.S. Sodha, S.I. Anwar, Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes. Appl. Energy 86(12), 2592–2597 (2009)CrossRefGoogle Scholar
  74. 74.
    S. Dubey, G.N. Tiwari, Analysis of PV/T flat plate water collectors connected in series. Sol. Energy 83(9), 1485–1498 (2009)CrossRefGoogle Scholar
  75. 75.
    A.S. Joshi, I. Dincer, B.V. Reddy, Energetic and exergetic analyses of a photovoltaic system. In Canadian Society for Mechanical Engineering (CSME) Forum, Ottawa, Canada (June 2008)Google Scholar
  76. 76.
    A. Hepbasli, A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew. Sust. Energ. Rev. 12(3), 593–661 (2008)CrossRefGoogle Scholar
  77. 77.
    F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr, Exergetic performance evaluation of a solar photovoltaic (PV) array. Aust. J. Basic Appl. Sci. 4(3), 502–519 (2010)Google Scholar
  78. 78.
    İ. Ceylan, A.E. Gürel, Exergetic analysis of a new design photovoltaic and thermal (PV/T) System. Environ. Prog. Sustain. Energy 34(4), 1249–1253 (2015)CrossRefGoogle Scholar
  79. 79.
    H. Fayaz, R. Nasrin, N.A. Rahim, M. Hasanuzzaman, Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Sol. Energy 169, 217–230 (2018)CrossRefGoogle Scholar
  80. 80.
    B.J. Huang, T.H. Lin, W.C. Hung, F.S. Sun, Performance evaluation of solar photovoltaic/thermal systems. Sol. Energy 70(5), 443–448 (2001)CrossRefGoogle Scholar
  81. 81.
    T.T. Chow, J. Ji, W. He, Photovoltaic-thermal collector system for domestic application. J. Solar Energy Eng. 129(2), 205–209 (2007)CrossRefGoogle Scholar
  82. 82.
    X. Zhang, X. Zhao, S. Smith, J. Xu, X. Yu, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew. Sust. Energ. Rev. 16(1), 599–617 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ali H. A. Al-Waeli
    • 1
  • Hussein A. Kazem
    • 2
  • Miqdam Tariq Chaichan
    • 3
  • Kamaruzzaman Sopian
    • 1
  1. 1.Solar Energy Research InstituteUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of EngineeringSohar UniversitySoharOman
  3. 3.Energy and Renewable Energies Technology CenterUniversity of TechnologyBaghdadIraq

Personalised recommendations