Advertisement

Mastocytosis pp 231-255 | Cite as

Management of Hematologic Disease in Mastocytosis

  • Hyun Don Yun
  • Celalettin UstunEmail author
Chapter

Abstract

Systemic mastocytosis (SM) with an associated hematologic neoplasm (SM-AHN) has generally poor prognosis and therefore considered a subtype of advanced SM (advSM). Other subtypes of advSM are aggressive SM and mast cell leukemia. Myeloid neoplasms such as chronic myelomonocytic leukemia, myeloproliferative neoplasm, myelodysplastic syndrome, and acute myeloid leukemia constitute the majority of AHN. Mutations other than KIT frequently identified in SM-AHN have also been found to be prognostic. Treatment of SM-AHN is challenging because SM-AHN is the most heterogeneous subtype in SM. In this chapter, we discuss the data available in the literature and propose an algorithm for the treatment of patients with SM-AHN.

Keywords

Systemic mastocytosis-associated with hematologic neoplasm (SM-AHN) Myeloid neoplasms Lymphoid neoplasms Systemic mastocytosis Treatment 

References

  1. 1.
    Valent P, Horny HP, Escribano L, Longley BJ, Li CY, Schwartz LB, et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res. 2001;25(7):603–25.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.PubMedCrossRefGoogle Scholar
  3. 3.
    Lim KH, Tefferi A, Lasho TL, Finke C, Patnaik M, Butterfield JH, et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood. 2009;113(23):5727–36.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gotlib J, Kluin-Nelemans HC, George TI, Akin C, Sotlar K, Hermine O, et al. Efficacy and safety of midostaurin in advanced systemic mastocytosis. N Engl J Med. 2016;374(26):2530–41.CrossRefGoogle Scholar
  5. 5.
    Pardanani A, Lim KH, Lasho TL, Finke C, McClure RF, Li CY, et al. Prognostically relevant breakdown of 123 patients with systemic mastocytosis associated with other myeloid malignancies. Blood. 2009;114(18):3769–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Barete S, Lortholary O, Damaj G, Hirsch I, Chandesris MO, Elie C, et al. Long-term efficacy and safety of cladribine (2-CdA) in adult patients with mastocytosis. Blood. 2015;126(8):1009–16.. quiz 50PubMedCrossRefGoogle Scholar
  7. 7.
    Horny HP, Sotlar K, Sperr WR, Valent P. Systemic mastocytosis with associated clonal haematological non-mast cell lineage diseases: a histopathological challenge. J Clin Pathol. 2004;57(6):604–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cohen SS, Skovbo S, Vestergaard H, Kristensen T, Moller M, Bindslev-Jensen C, et al. Epidemiology of systemic mastocytosis in Denmark. Br J Haematol. 2014;166(4):521–8.CrossRefGoogle Scholar
  9. 9.
    Shivarov V, Gueorguieva R, Ivanova M, Stoimenov A. Incidence of second solid cancers in mastocytosis patients: a SEER database analysis. Leuk Lymphoma. 2018;59(6):1474–77.CrossRefGoogle Scholar
  10. 10.
    Johnson RC, Savage NM, Chiang T, Gotlib JR, Cherry AM, Arber DA, et al. Hidden mastocytosis in acute myeloid leukemia with t(8;21)(q22;q22). Am J Clin Pathol. 2013;140(4):525–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Sotlar K, Saeger W, Stellmacher F, Stahmer J, Jackle S, Valent P, et al. “Occult” mastocytosis with activating c-kit point mutation evolving into systemic mastocytosis associated with plasma cell myeloma and secondary amyloidosis. J Clin Pathol. 2006;59(8):875–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ludolph-Hauser D, Schopf P, Rueff F, Przybilla B. Occult cutaneous mastocytosis. Hautarzt. 2001;52(5):390–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Bernd HW, Sotlar K, Lorenzen J, Osieka R, Fabry U, Valent P, et al. Acute myeloid leukaemia with t(8;21) associated with "occult" mastocytosis. Report of an unusual case and review of the literature. J Clin Pathol. 2004;57(3):324–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lim KH, Pardanani A, Butterfield JH, Li CY, Tefferi A. Cytoreductive therapy in 108 adults with systemic mastocytosis: outcome analysis and response prediction during treatment with interferon-alpha, hydroxyurea, imatinib mesylate or 2-chlorodeoxyadenosine. Am J Hematol. 2009;84(12):790–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang SA, Hutchinson L, Tang G, Chen SS, Miron PM, Huh YO, et al. Systemic mastocytosis with associated clonal hematological non-mast cell lineage disease: clinical significance and comparison of chomosomal abnormalities in SM and AHNMD components. Am J Hematol. 2013;88(3):219–24.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Travis WD, Li CY, Yam LT, Bergstralh EJ, Swee RG. Significance of systemic mast cell disease with associated hematologic disorders. Cancer. 1988;62(5):965–72.PubMedCrossRefGoogle Scholar
  17. 17.
    Jawhar M, Kreil S, Schwaab J, Shoumariyeh K, Span L, Fuhrmann S, et al. Systemic mastocytosis with associated acute myeloid leukemia (SM-AML): a poor-risk multi-mutated disease that follows a distinct diagnostic algorithm and requires high-dose stem cell-targeting therapy. Blood. 2017;130:29116.CrossRefGoogle Scholar
  18. 18.
    Sotlar K, Bache A, Stellmacher F, Bultmann B, Valent P, Horny HP. Systemic mastocytosis associated with chronic idiopathic myelofibrosis: a distinct subtype of systemic mastocytosis associated with a [corrected] clonal hematological non-mast [corrected] cell lineage disorder carrying the activating point mutations KITD816V and JAK2V617F. J Mol Diagn. 2008;10(1):58–66.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fritsche-Polanz R, Fritz M, Huber A, Sotlar K, Sperr WR, Mannhalter C, et al. High frequency of concomitant mastocytosis in patients with acute myeloid leukemia exhibiting the transforming KIT mutation D816V. Mol Oncol. 2010;4(4):335–46.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Pullarkat ST, Pullarkat V, Lagoo A, Brynes R, Weiss LM, Bedell V, et al. Characterization of bone marrow mast cells in acute myeloid leukemia with t(8;21) (q22;q22); RUNX1-RUNX1T1. Leuk Res. 2013;37(11):1572–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Pullarkat V, Bedell V, Kim Y, Bhatia R, Nakamura R, Forman S, et al. Neoplastic mast cells in systemic mastocytosis associated with t(8;21) acute myeloid leukemia are derived from the leukemic clone. Leuk Res. 2007;31(2):261–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Vigil CE, Wang SA, Cortes JE, Bueso-Ramos C, Verstovsek S, Shinder R, et al. Dasatinib-responsive mast cell neoplasms as initial presentation of chronic myelogenous leukemia in blast phase. J Clin Oncol. 2011;29(17):e514–6.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ustun C, Corless CL, Savage N, Fiskus W, Manaloor E, Heinrich MC, et al. Chemotherapy and dasatinib induce long-term hematologic and molecular remission in systemic mastocytosis with acute myeloid leukemia with KIT D816V. Leuk Res. 2009;33(5):735–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Nagai S, Ichikawa M, Takahashi T, Sato H, Yokota H, Oshima K, et al. The origin of neoplastic mast cells in systemic mastocytosis with AML1/ETO-positive acute myeloid leukemia. Exp Hematol. 2007;35(11):1747–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Jawhar M, Schwaab J, Schnittger S, Sotlar K, Horny HP, Metzgeroth G, et al. Molecular profiling of myeloid progenitor cells in multi-mutated advanced systemic mastocytosis identifies KIT D816V as a distinct and late event. Leukemia. 2015;29(5):1115–22.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kim Y, Weiss LM, Chen YY, Pullarkat V. Distinct clonal origins of systemic mastocytosis and associated B-cell lymphoma. Leuk Res. 2007;31(12):1749–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Patnaik MM, Rangit V, Lasho TL, Hoversten KP, Finke CM, Ketterling RP, et al. A comparison of clinical and molecular characteristics of patients with systemic mastocytosis with chronic myelomonocytic leukemia to CMML alone. Leukemia. 2018;32(8):1850–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Naumann N, Jawhar M, Schwaab J, Kluger S, Lubke J, Metzgeroth G, et al. Incidence and prognostic impact of cytogenetic aberrations in patients with systemic mastocytosis. Genes Chromosomes Cancer. 2018;57(5):252–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Schwaab J, Schnittger S, Sotlar K, Walz C, Fabarius A, Pfirrmann M, et al. Comprehensive mutational profiling in advanced systemic mastocytosis. Blood. 2013;122(14):2460–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468(7325):839–43.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800.PubMedCrossRefGoogle Scholar
  32. 32.
    Boultwood J, Perry J, Pellagatti A, Fernandez-Mercado M, Fernandez-Santamaria C, Calasanz MJ, et al. Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia. 2010;24(5):1062–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Damaj G, Joris M, Chandesris O, Hanssens K, Soucie E, Canioni D, et al. ASXL1 but not TET2 mutations adversely impact overall survival of patients suffering systemic mastocytosis with associated clonal hematologic non-mast-cell diseases. PLoS One. 2014;9(1):e85362.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ustun C, Arock M, Kluin-Nelemans HC, Reiter A, Sperr WR, George T, et al. Advanced systemic mastocytosis: from molecular and genetic progress to clinical practice. Haematologica. 2016;101(10):1133–43.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Traina F, Visconte V, Jankowska AM, Makishima H, O'Keefe CL, Elson P, et al. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis. PLoS One. 2012;7(8):e43090.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jawhar M, Schwaab J, Schnittger S, Meggendorfer M, Pfirrmann M, Sotlar K, et al. Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V(+) advanced systemic mastocytosis. Leukemia. 2016;30(1):136–43.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J. 2009;417(1):15–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Katoh M. Functional proteomics of the epigenetic regulators ASXL1, ASXL2 and ASXL3: a convergence of proteomics and epigenetics for translational medicine. Expert Rev Proteomics. 2015;12(3):317–28.PubMedCrossRefGoogle Scholar
  39. 39.
    Hanssens K, Brenet F, Agopian J, Georgin-Lavialle S, Damaj G, Cabaret L, et al. SRSF2-p95 hotspot mutation is highly associated with advanced forms of mastocytosis and mutations in epigenetic regulator genes. Haematologica. 2014;99(5):830–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Pardanani A, Lasho T, Elala Y, Wassie E, Finke C, Reichard KK, et al. Next-generation sequencing in systemic mastocytosis: derivation of a mutation-augmented clinical prognostic model for survival. Am J Hematol. 2016;91(9):888–93.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jawhar M, Schwaab J, Naumann N, Horny HP, Sotlar K, Haferlach T, et al. Response and progression on midostaurin in advanced systemic mastocytosis: KIT D816V and other molecular markers. Blood. 2017;130(2):137–45.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T, et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood. 2011;117(8):2348–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Ustun C, Marcucci G. Emerging diagnostic and therapeutic approaches in core binding factor acute myeloid leukaemia. Curr Opin Hematol. 2015;22(2):85–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Solh M, Yohe S, Weisdorf D, Ustun C. Core-binding factor acute myeloid leukemia: heterogeneity, monitoring, and therapy. Am J Hematol. 2014;89(12):1121–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Ronnstrand L. Signal transduction via the stem cell factor receptor/c-kit. Cell Mol Life Sci. 2004;61(19–20):2535–48.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gotlib J. Tyrosine kinase inhibitors in the treatment of eosinophilic neoplasms and systemic mastocytosis. Hematol Oncol Clin North Am. 2017;31(4):643–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Ustun C, DeRemer DL, Akin C. Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res. 2011;35(9):1143–52.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sotlar K, Colak S, Bache A, Berezowska S, Krokowski M, Bultmann B, et al. Variable presence of KITD816V in clonal haematological non-mast cell lineage diseases associated with systemic mastocytosis (SM-AHNMD). J Pathol. 2010;220(5):586–95.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U, et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest. 1993;92(4):1736–44.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Baumgartner C, Cerny-Reiterer S, Sonneck K, Mayerhofer M, Gleixner KV, Fritz R, et al. Expression of activated STAT5 in neoplastic mast cells in systemic mastocytosis: subcellular distribution and role of the transforming oncoprotein KIT D816V. Am J Pathol. 2009;175(6):2416–29.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ning ZQ, Li J, Arceci RJ. Signal transducer and activator of transcription 3 activation is required for Asp(816) mutant c-kit-mediated cytokine-independent survival and proliferation in human leukemia cells. Blood. 2001;97(11):3559–67.PubMedCrossRefGoogle Scholar
  52. 52.
    Zoi K, Cross NC. Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol. 2015;101(3):229–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Meyer T, Regenass U, Fabbro D, Alteri E, Rosel J, Muller M, et al. A derivative of staurosporine (CGP 41 251) shows selectivity for protein kinase C inhibition and in vitro anti-proliferative as well as in vivo anti-tumor activity. Int J Cancer. 1989;43(5):851–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, et al. PKC412--a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des. 2000;15(1):17–28.PubMedGoogle Scholar
  55. 55.
    Weisberg E, Sattler M, Manley PW, Griffin JD. Spotlight on midostaurin in the treatment of FLT3-mutated acute myeloid leukemia and systemic mastocytosis: design, development, and potential place in therapy. Onco Targets Ther. 2018;11:175–82.PubMedCrossRefGoogle Scholar
  56. 56.
    Gotlib J, Berube C, Growney JD, Chen CC, George TI, Williams C, et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood. 2005;106(8):2865–70.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Growney JD, Clark JJ, Adelsperger J, Stone R, Fabbro D, Griffin JD, et al. Activation mutations of human c-KIT resistant to imatinib mesylate are sensitive to the tyrosine kinase inhibitor PKC412. Blood. 2005;106(2):721–4.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    DeAngelo DJ, George TI, Linder A, Langford C, Perkins C, Ma J, et al. Efficacy and safety of midostaurin in patients with advanced systemic mastocytosis: 10-year median follow-up of a phase II trial. Leukemia. 2018;32(2):470–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Gleixner KV, Valent P, Sperr WR. Treatment of patients with aggressive systemic mastocytosis, mast cell leukemia and mast cell sarcoma: a single center experience. Blood. 2018;132:1769.CrossRefGoogle Scholar
  60. 60.
    Mathias A, Schneeweiss GS, Berger D, Eisenwort G, Jawhar M, Georg G, Hoermann G, Sperr WR, Arock M, Reiter A, Valent P, Gleixner KV. The CDK4/6 inhibitor palbociclib exerts growth-inhibitory effects on neoplastic mast cells and synergizes with midostaurin in producing growth arrest. Blood. 2018;132:1363.CrossRefGoogle Scholar
  61. 61.
    Asiri Ediriwickrema DJD, George TI, Rosenberg-Hasson Y, Perkins C, Langford C, Gotlib JR. Comprehensive cytokine profiling of patients with advanced systemic mastocytosis treated with midostaurin. Blood. 2018;132:1792.CrossRefGoogle Scholar
  62. 62.
    Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD, et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005;105(1):54–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377(5):454–64.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tefferi A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J Cell Mol Med. 2009;13(2):215–37.PubMedCrossRefGoogle Scholar
  65. 65.
    Pardanani A, Phyliky RL, Li CY, Tefferi A. 2-Chlorodeoxyadenosine therapy for disseminated Langerhans cell histiocytosis. Mayo Clin Proc. 2003;78(3):301–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Andrejauskas-Buchdunger E, Regenass U. Differential inhibition of the epidermal growth factor-, platelet-derived growth factor-, and protein kinase C-mediated signal transduction pathways by the staurosporine derivative CGP 41251. Cancer Res. 1992;52(19):5353–8.PubMedGoogle Scholar
  67. 67.
    Cools J, Stover EH, Boulton CL, Gotlib J, Legare RD, Amaral SM, et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell. 2003;3(5):459–69.PubMedCrossRefGoogle Scholar
  68. 68.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2(5):561–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–14.PubMedCrossRefGoogle Scholar
  70. 70.
    Wilkinson K, Velloso ER, Lopes LF, Lee C, Aster JC, Shipp MA, et al. Cloning of the t(1;5)(q23;q33) in a myeloproliferative disorder associated with eosinophilia: involvement of PDGFRB and response to imatinib. Blood. 2003;102(12):4187–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Vizmanos JL, Novo FJ, Roman JP, Baxter EJ, Lahortiga I, Larrayoz MJ, et al. NIN, a gene encoding a CEP110-like centrosomal protein, is fused to PDGFRB in a patient with a t(5;14)(q33;q24) and an imatinib-responsive myeloproliferative disorder. Cancer Res. 2004;64(8):2673–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Score J, Curtis C, Waghorn K, Stalder M, Jotterand M, Grand FH, et al. Identification of a novel imatinib responsive KIF5B-PDGFRA fusion gene following screening for PDGFRA overexpression in patients with hypereosinophilia. Leukemia. 2006;20(5):827–32.PubMedCrossRefGoogle Scholar
  73. 73.
    Akin C, Brockow K, D'Ambrosio C, Kirshenbaum AS, Ma Y, Longley BJ, et al. Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp Hematol. 2003;31(8):686–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Zermati Y, De Sepulveda P, Feger F, Letard S, Kersual J, Casteran N, et al. Effect of tyrosine kinase inhibitor STI571 on the kinase activity of wild-type and various mutated c-kit receptors found in mast cell neoplasms. Oncogene. 2003;22(5):660–4.PubMedCrossRefGoogle Scholar
  75. 75.
    Ma Y, Zeng S, Metcalfe DD, Akin C, Dimitrijevic S, Butterfield JH, et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood. 2002;99(5):1741–4.PubMedCrossRefGoogle Scholar
  76. 76.
    Frost MJ, Ferrao PT, Hughes TP, Ashman LK. Juxtamembrane mutant V560GKit is more sensitive to Imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant D816VKit is resistant. Mol Cancer Ther. 2002;1(12):1115–24.PubMedGoogle Scholar
  77. 77.
    Vega-Ruiz A, Cortes JE, Sever M, Manshouri T, Quintas-Cardama A, Luthra R, et al. Phase II study of imatinib mesylate as therapy for patients with systemic mastocytosis. Leuk Res. 2009;33(11):1481–4.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pardanani A, Elliott M, Reeder T, Li CY, Baxter EJ, Cross NC, et al. Imatinib for systemic mast-cell disease. Lancet. 2003;362(9383):535–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Pardanani A, Brockman SR, Paternoster SF, Flynn HC, Ketterling RP, Lasho TL, et al. FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood. 2004;104(10):3038–45.PubMedCrossRefGoogle Scholar
  80. 80.
    Miranda RN, Esparza AR, Sambandam S, Medeiros LJ. Systemic mast cell disease presenting with peripheral blood eosinophilia. Hum Pathol. 1994;25(7):727–30.PubMedCrossRefGoogle Scholar
  81. 81.
    Florian S, Esterbauer H, Binder T, Mullauer L, Haas OA, Sperr WR, et al. Systemic mastocytosis (SM) associated with chronic eosinophilic leukemia (SM-CEL): detection of FIP1L1/PDGFRalpha, classification by WHO criteria, and response to therapy with imatinib. Leuk Res. 2006;30(9):1201–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Metzgeroth G, Walz C, Score J, Siebert R, Schnittger S, Haferlach C, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia. 2007;21(6):1183–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Shah NP, Lee FY, Luo R, Jiang Y, Donker M, Akin C. Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood. 2006;108(1):286–91.PubMedCrossRefGoogle Scholar
  84. 84.
    Gleixner KV, Mayerhofer M, Sonneck K, Gruze A, Samorapoompichit P, Baumgartner C, et al. Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica. 2007;92(11):1451–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Aichberger KJ, Sperr WR, Gleixner KV, Kretschmer A, Valent P. Treatment responses to cladribine and dasatinib in rapidly progressing aggressive mastocytosis. Eur J Clin Investig. 2008;38(11):869–73.CrossRefGoogle Scholar
  86. 86.
    Verstovsek S, Tefferi A, Cortes J, O'Brien S, Garcia-Manero G, Pardanani A, et al. Phase II study of dasatinib in Philadelphia chromosome-negative acute and chronic myeloid diseases, including systemic mastocytosis. Clin Cancer Res. 2008;14(12):3906–15.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Carson DA, Wasson DB, Taetle R, Yu A. Specific toxicity of 2-chlorodeoxyadenosine toward resting and proliferating human lymphocytes. Blood. 1983;62(4):737–43.PubMedCrossRefGoogle Scholar
  88. 88.
    Blum KA, Johnson JL, Niedzwiecki D, Piro LD, Saven A, Peterson BA, et al. Prolonged follow-up after initial therapy with 2-chlorodeoxyadenosine in patients with indolent non-Hodgkin lymphoma: results of Cancer and Leukemia Group B Study 9153. Cancer. 2006;107(12):2817–25.PubMedCrossRefGoogle Scholar
  89. 89.
    Puvvada SD, Guillen-Rodriguez J, Kumar A, Inclan L, Heard K, Rivera XI, et al. Phase 2 open-label study of bortezomib, cladribine, and rituximab in advanced, newly diagnosed, and relapsed/refractory mantle-cell and indolent lymphomas. Clin Lymphoma Myeloma Leuk. 2018;18(1):58–64.PubMedCrossRefGoogle Scholar
  90. 90.
    Robak T, Smolewski P, Cebula B, Szmigielska-Kaplon A, Chojnowski K, Blonski JZ. Rituximab combined with cladribine or with cladribine and cyclophosphamide in heavily pretreated patients with indolent lymphoproliferative disorders and mantle cell lymphoma. Cancer. 2006;107(7):1542–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Tulpule A, Schiller G, Harvey-Buchanan LA, Lee M, Espina BM, Khan AU, et al. Cladribine in the treatment of advanced relapsed or refractory low and intermediate grade non-Hodgkin's lymphoma. Cancer. 1998;83(11):2370–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Saven A, Emanuele S, Kosty M, Koziol J, Ellison D, Piro L. 2-Chlorodeoxyadenosine activity in patients with untreated, indolent non-Hodgkin's lymphoma. Blood. 1995;86(5):1710–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Saven A, Piro LD. 2-Chlorodeoxyadenosine: a newer purine analog active in the treatment of indolent lymphoid malignancies. Ann Intern Med. 1994;120(9):784–91.PubMedCrossRefGoogle Scholar
  94. 94.
    Kalinka-Warzocha E, Wajs J, Lech-Maranda E, Ceglarek B, Holowiecki J, Federowicz I, et al. Randomized comparison of cladribine alone or in combination with cyclophosphamide, and cyclophosphamide, vincristine and prednisone in previously untreated low-grade B-cell non-Hodgkin lymphoma patients: final report of the Polish Lymphoma Research Group. Cancer. 2008;113(2):367–75.PubMedCrossRefGoogle Scholar
  95. 95.
    Robak T, Blonski JZ, Gora-Tybor J, Jamroziak K, Dwilewicz-Trojaczek J, Tomaszewska A, et al. Cladribine alone and in combination with cyclophosphamide or cyclophosphamide plus mitoxantrone in the treatment of progressive chronic lymphocytic leukemia: report of a prospective, multicenter, randomized trial of the Polish Adult Leukemia Group (PALG CLL2). Blood. 2006;108(2):473–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Robak T, Blonski JZ, Kasznicki M, Blasinska-Morawiec M, Krykowski E, Dmoszynska A, et al. Cladribine with prednisone versus chlorambucil with prednisone as first-line therapy in chronic lymphocytic leukemia: report of a prospective, randomized, multicenter trial. Blood. 2000;96(8):2723–9.PubMedGoogle Scholar
  97. 97.
    Christensen LF, Broom AD, Robins MJ, Bloch A. Synthesis and biological activity of selected 2,6-disubstituted-(2-deoxy- -and- -D-erythro-pentofuranosyl)purines. J Med Chem. 1972;15(7):735–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Goodman GR, Burian C, Koziol JA, Saven A. Extended follow-up of patients with hairy cell leukemia after treatment with cladribine. J Clin Oncol. 2003;21(5):891–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Carrera CJ, Terai C, Lotz M, Curd JG, Piro LD, Beutler E, et al. Potent toxicity of 2-chlorodeoxyadenosine toward human monocytes in vitro and in vivo. A novel approach to immunosuppressive therapy. J Clin Invest. 1990;86(5):1480–8.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Saven A, Burian C. Cladribine activity in adult langerhans-cell histiocytosis. Blood. 1999;93(12):4125–30.PubMedCrossRefGoogle Scholar
  101. 101.
    Krieger O, Kasparu H, Girschikofsky M, Lang F, Oppitz P, Lutz D. Cladribine (2-CDA) is active in “high-risk”-chronic myelomonocytic leukemia and secondary or relapsed acute myelo(mono)cytic leukemia. Leuk Res. 1997;21(1):s48.CrossRefGoogle Scholar
  102. 102.
    Holowiecki J, Grosicki S, Giebel S, Robak T, Kyrcz-Krzemien S, Kuliczkowski K, et al. Cladribine, but not fludarabine, added to daunorubicin and cytarabine during induction prolongs survival of patients with acute myeloid leukemia: a multicenter, randomized phase III study. J Clin Oncol. 2012;30(20):2441–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Boddu P, Kantarjian H, Ravandi F, Garcia-Manero G, Borthakur G, Andreeff M, et al. Outcomes with lower intensity therapy in TP53-mutated acute myeloid leukemia. Leuk Lymphoma. 2018: 59(9):1–4.CrossRefGoogle Scholar
  104. 104.
    Fridle C, Medinger M, Wilk MC, Seipel K, Passweg J, Manz MG, et al. Cladribine, cytarabine and idarubicin (CLA-Ida) salvage chemotherapy in relapsed acute myeloid leukemia (AML). Leuk Lymphoma. 2017;58(5):1068–75.PubMedCrossRefGoogle Scholar
  105. 105.
    Libura M, Giebel S, Piatkowska-Jakubas B, Pawelczyk M, Florek I, Matiakowska K, et al. Cladribine added to daunorubicin-cytarabine induction prolongs survival of FLT3-ITD+ normal karyotype AML patients. Blood. 2016;127(3):360–2.PubMedCrossRefGoogle Scholar
  106. 106.
    Tefferi A, Li CY, Butterfield JH, Hoagland HC. Treatment of systemic mast-cell disease with cladribine. N Engl J Med. 2001;344(4):307–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Kluin-Nelemans HC, Oldhoff JM, Van Doormaal JJ, Van ‘t Wout JW, Verhoef G, Gerrits WB, et al. Cladribine therapy for systemic mastocytosis. Blood. 2003;102(13):4270–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Sigal DS, Miller HJ, Schram ED, Saven A. Beyond hairy cell: the activity of cladribine in other hematologic malignancies. Blood. 2010;116(16):2884–96.PubMedCrossRefGoogle Scholar
  109. 109.
    Hauswirth AW, Simonitsch-Klupp I, Uffmann M, Koller E, Sperr WR, Lechner K, et al. Response to therapy with interferon alpha-2b and prednisolone in aggressive systemic mastocytosis: report of five cases and review of the literature. Leuk Res. 2004;28(3):249–57.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Casassus P, Caillat-Vigneron N, Martin A, Simon J, Gallais V, Beaudry P, et al. Treatment of adult systemic mastocytosis with interferon-alpha: results of a multicentre phase II trial on 20 patients. Br J Haematol. 2002;119(4):1090–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Kiladjian JJ, Masse A, Cassinat B, Mokrani H, Teyssandier I, le Couedic JP, et al. Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia. 2010;24(8):1519–23.PubMedCrossRefGoogle Scholar
  112. 112.
    Gowin K, Thapaliya P, Samuelson J, Harrison C, Radia D, Andreasson B, et al. Experience with pegylated interferon alpha-2a in advanced myeloproliferative neoplasms in an international cohort of 118 patients. Haematologica. 2012;97(10):1570–3.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Utke Rank C, Weis Bjerrum O, Larsen TS, Kjaer L, de Stricker K, Riley CH, et al. Minimal residual disease after long-term interferon-alpha2 treatment: a report on hematological, molecular and histomorphological response patterns in 10 patients with essential thrombocythemia and polycythemia vera. Leuk Lymphoma. 2015;59(9):1–7.Google Scholar
  114. 114.
    Kiladjian JJ, Cassinat B, Chevret S, Turlure P, Cambier N, Roussel M, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112(8):3065–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Quintas-Cardama A, Kantarjian H, Manshouri T, Luthra R, Estrov Z, Pierce S, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27(32):5418–24.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Kiladjian JJ, Cassinat B, Turlure P, Cambier N, Roussel M, Bellucci S, et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood. 2006;108(6):2037–40.PubMedCrossRefGoogle Scholar
  117. 117.
    Verger E, Cassinat B, Chauveau A, Dosquet C, Giraudier S, Schlageter MH, et al. Clinical and molecular response to interferon-alpha therapy in essential thrombocythemia patients with CALR mutations. Blood. 2015;126(24):2585–91.PubMedCrossRefGoogle Scholar
  118. 118.
    Pizzi M, Silver RT, Barel A, Orazi A. Recombinant interferon-alpha in myelofibrosis reduces bone marrow fibrosis, improves its morphology and is associated with clinical response. Mod Pathol. 2015;28(10):1315–23.PubMedCrossRefGoogle Scholar
  119. 119.
    Gowin K, Jain T, Kosiorek H, Tibes R, Camoriano J, Palmer J, et al. Pegylated interferon alpha – 2a is clinically effective and tolerable in myeloproliferative neoplasm patients treated off clinical trial. Leuk Res. 2017;54:73–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Quintas-Cardama A, Abdel-Wahab O, Manshouri T, Kilpivaara O, Cortes J, Roupie AL, et al. Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood. 2013;122(6):893–901.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kiladjian JJ, Giraudier S, Cassinat B. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 2016;30(4):776–81.PubMedCrossRefGoogle Scholar
  122. 122.
    Riley CH, Hansen M, Brimnes MK, Hasselbalch HC, Bjerrum OW, Straten PT, et al. Expansion of circulating CD56bright natural killer cells in patients with JAK2-positive chronic myeloproliferative neoplasms during treatment with interferon-alpha. Eur J Haematol. 2015;94(3):227–34.PubMedCrossRefGoogle Scholar
  123. 123.
    Ustun C, Reiter A, Scott BL, Nakamura R, Damaj G, Kreil S, et al. Hematopoietic stem-cell transplantation for advanced systemic mastocytosis. J Clin Oncol. 2014;32(29):3264–74.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ustun C, Smith A, Cayci Z, Courville EL, Corbacioglu S, Akin C, et al. Allogeneic hematopoietic cell transplantation in systemic mastocytosis: is there a high risk for veno-occlusive disease? Eur J Haematol. 2016;96(6):655–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36.PubMedCrossRefGoogle Scholar
  126. 126.
    Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8,21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24(24):3904–11.PubMedCrossRefGoogle Scholar
  127. 127.
    Ustun C, Gotlib J, Popat U, Artz A, Litzow M, Reiter A, et al. Consensus opinion on allogeneic hematopoietic cell transplantation in advanced systemic Mastocytosis. Biol Blood Marrow Transplant. 2016;22(8):1348–56.PubMedCrossRefGoogle Scholar
  128. 128.
    Ghanim V, Herrmann H, Heller G, Peter B, Hadzijusufovic E, Blatt K, et al. 5-azacytidine and decitabine exert proapoptotic effects on neoplastic mast cells: role of FAS-demethylation and FAS re-expression, and synergism with FAS-ligand. Blood. 2012;119(18):4242–52.PubMedCrossRefGoogle Scholar
  129. 129.
    Lago KJ, Shupe MP, Hannah WN, Velagaleti GVN, Mendiola C, Ortega V, et al. Myelodysplasia and mast cell leukemia with t(9,22). Case Rep Oncol Med. 2017;2017:9249302.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Rechsteiner M, Muller R, Reineke T, Goede J, Bohnert A, Zhong Q, et al. Modelling of a genetically diverse evolution of Systemic Mastocytosis with Chronic Myelomonocytic Leukemia (SM-CMML) by next generation sequencing. Exp Hematol Oncol. 2014;3:18.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Broesby-Olsen S, Kristensen TK, Moller MB, Bindslev-Jensen C, Vestergaard H, Mastocytosis Centre OUH. Adult-onset systemic mastocytosis in monozygotic twins with KIT D816V and JAK2 V617F mutations. J Allergy Clin Immunol. 2012;130(3):806–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Prerna Rastogi LCM, Komrokji RS, Padron E, Sagatys EM, Naghashpour M, Tao J, Bennett JM, List A, Lancet JE, Zuckerman KS, Zhang L. Clinical features and outcome of clonal mastocytosis secondary to chronic myelomonocytic leukemia (SM- AHNMD/CMML) given diverse therapies – a single institution retrospective study. Blood. 2013;122:4076.CrossRefGoogle Scholar
  133. 133.
    Al-Ali HK, Jaekel N, Niederwieser D. The role of hypomethylating agents in the treatment of elderly patients with AML. J Geriatr Oncol. 2014;5(1):89–105.PubMedCrossRefGoogle Scholar
  134. 134.
    Williams CB, Kambhampati S, Fiskus W, Wick J, Dutreix C, Ganguly S, et al. Preclinical and phase I results of decitabine in combination with midostaurin (PKC412) for newly diagnosed elderly or relapsed/refractory adult patients with acute myeloid leukemia. Pharmacotherapy. 2013;33(12):1341–52.PubMedCrossRefGoogle Scholar
  135. 135.
    Strati P, Kantarjian H, Ravandi F, Nazha A, Borthakur G, Daver N, et al. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90(4):276–81.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Erica Evans AG, Hodous B, Davis A, Zhu J, Kohl NE, Lengauer C. Blu-285, a potent and selective inhibitor for hematologic malignancies with KIT exon 17 mutations. Blood. 2015;126:568.CrossRefGoogle Scholar
  137. 137.
    Evans EK, Gardino AK, Kim JL, Hodous BL, Shutes A, Davis A, et al. A precision therapy against cancers driven by KIT/PDGFRA mutations. Sci Transl Med. 2017;9(414).Google Scholar
  138. 138.
    Daniel J, DeAngelo ATQ, Radia D, Drummond MW, Gotlib J, Robinson WA, Hexner E, Verstovsek S, Shi H, Alvarez-Diez T, Schmidt-Kittler O, Evans E, Healy ME, Wolf BB, Deininger MW. Clinical activity in a phase 1 study of Blu-285, a potent, highly-selective inhibitor of KIT D816V in Advanced Systemic Mastocytosis (AdvSM). Blood. 2017;130:2.CrossRefGoogle Scholar
  139. 139.
    Deininger MW, Gotlib J, Robinson WA, Radia DH, Drummond MW, Quiery AT, Hexner E, Verstovsek S, Shi H, Schmidt-Kittler O, Tugnait M, Conlan MG, DeAngelo DJ. Avapritinib (BLU-285), a selective KIT inhibitor, is associated with high response rate and tolerable safety profile in advanced systemic mastocytosis (advSM): results of a phse 1 study [Abstract]. In: Europian Hematology Association; 2018 Jun 15. Stockholm: EHA; 2018 Abstract PF612.Google Scholar
  140. 140.
    Mark W, Drummond DJD, Deininger MW, Radia D, Quiery AT, Hexner EO, Shi H, Alvarez-Diez T, Evans EK, Healy ME, Wolf BB, Verstovsek S. Preliminary safety and clinical activity in a phase 1 study of Blu-285, a potent, highly-selective inhibitor of KIT D816V in advanced systemic mastocytosis (SM). Blood. 2016;128:477.CrossRefGoogle Scholar
  141. 141.
    Jason R, Gotlib DR, DeAngelo DJ, Bose P, Drummond MW, Hexner EO, Robinson WA, Conlan MG, Oren RG, Shi H, Deininger MW. Avapritinib, a potent and selective inhibitor of KIT D816V, improves symptoms of advanced systemic mastocytosis (AdvSM): analyses of patient reported outcomes (PROs) from the phase 1 (EXPLORER) study using the (AdvSM) symptom assessment form (AdvSM-SAF), a new PRO questionnaire for (AdvSM). Blood. 2018;132:351.Google Scholar
  142. 142.
    Kampa-Schittenhelm KM, Frey J, Haeusser LA, Illing B, Pavlovsky AA, Blumenstock G, et al. Crenolanib is a type I tyrosine kinase inhibitor that inhibits mutant KIT D816 isoforms prevalent in systemic mastocytosis and core binding factor leukemia. Oncotarget. 2017;8(47):82897–909.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Schneeweiss M, Peter B, Bibi S, Eisenwort G, Smiljkovic D, Blatt K, et al. The KIT and PDGFRA switch-control inhibitor DCC-2618 blocks growth and survival of multiple neoplastic cell types in advanced mastocytosis. Haematologica. 2018;103:799.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–44.PubMedCrossRefGoogle Scholar
  145. 145.
    Blatt K, Cerny-Reiterer S, Schwaab J, Sotlar K, Eisenwort G, Stefanzl G, et al. Identification of the Ki-1 antigen (CD30) as a novel therapeutic target in systemic mastocytosis. Blood. 2015;126(26):2832–41.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Borate U, Mehta A, Reddy V, Tsai M, Josephson N, Schnadig I. Treatment of CD30-positive systemic mastocytosis with brentuximab vedotin. Leuk Res. 2016;44:25–31.PubMedCrossRefGoogle Scholar
  147. 147.
    John H, Baird SV, George TI, Reyes I, Abuel J, Perkins C, Langford C, Schroeder K, Gotlib J. Phase 2 study of brentuximab vedotin in patients with advanced systemic mastocytosis. Blood. 2017;130:2909.Google Scholar
  148. 148.
    Jen EY, Ko CW, Lee JE, Del Valle PL, Aydanian A, Jewell C, et al. FDA approval: gemtuzumab ozogamicin for the treatment of adults with newly-diagnosed CD33-positive acute myeloid leukemia. Clin Cancer Res. 2018;24:3242.PubMedCrossRefGoogle Scholar
  149. 149.
    Krauth MT, Bohm A, Agis H, Sonneck K, Samorapoompichit P, Florian S, et al. Effects of the CD33-targeted drug gemtuzumab ozogamicin (Mylotarg) on growth and mediator secretion in human mast cells and blood basophils. Exp Hematol. 2007;35(1):108–16.PubMedCrossRefGoogle Scholar
  150. 150.
    Alvarez-Twose I, Martinez-Barranco P, Gotlib J, Garcia-Montero A, Morgado JM, Jara-Acevedo M, et al. Complete response to gemtuzumab ozogamicin in a patient with refractory mast cell leukemia. Leukemia. 2016;30(8):1753–6.PubMedCrossRefGoogle Scholar
  151. 151.
    Testa U, Pelosi E, Frankel A. CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark Res. 2014;2(1):4.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Pardanani A, Lasho T, Chen D, Kimlinger TK, Finke C, Zblewski D, et al. Aberrant expression of CD123 (interleukin-3 receptor-alpha) on neoplastic mast cells. Leukemia. 2015;29(7):1605–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Douglas Smith B, Roboz GJ, Walter RB, Altman JK, Ferguson A, Curcio TJ, Orlowski KF, Garrett L, Busfield SJ, Barnden M, Sedgmen B, Ghosh S, Hosback S, Davis R, Dyson A, Dasen S, DeWitte M, Bensen-Kennedy DM, Roberts AW. First-in man, phase 1 study of CSL362 (anti-IL3Rα/anti-CD123 monoclonal antibody) in patients with CD123+ acute myeloid leukemia (AML) in CR at high risk for early relapse. Blood. 2014;124:120.CrossRefGoogle Scholar
  154. 154.
    Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl JU, et al. IL15 Trispecific Killer Engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res. 2016;22(14):3440–50.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Ustun C, Williams S, Skendzel S, Kodal B, Arock M, Gotlib J, et al. Allogeneic NK cells eradicate myeloblasts but not neoplastic mast cells in systemic mastocytosis associated with acute myeloid leukemia. Am J Hematol. 2017;92(5):E66–E8.PubMedCrossRefGoogle Scholar
  156. 156.
    Hyun Don Yun MF, Vallera DA, Cooley S, Gotlib JR, Ustun C, Miller JS. Trispecific Killer Engager CD16xIL15xCD33 enhances alloreactivity of NK cells against aberrant mast cells of patients with systemic mastocytosis. Biol Blood Marrow Transplant. 2018;24(3):S174–S5.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Hematology, Oncology, and Cell Therapy, Department of MedicineRush UniversityChicagoUSA

Personalised recommendations