Advertisement

Exertional Heat Stroke

  • William M. AdamsEmail author
  • Rebecca L. Stearns
  • Douglas J. Casa
Chapter

Abstract

Exertional heat stroke (EHS), defined as an internal body temperature > 40 °C with associated neuropsychiatric impairment, is a medical emergency, requiring prompt recognition, management, and care to ensure survival. Caused by a number of intrinsic (e.g., acclimatization status, cardiovascular fitness, hydration) and extrinsic (e.g., environmental conditions, clothing requirements, work-to-rest ratios) risk factors, these risk factors can create a “perfect storm” to overwhelm an individual’s thermoregulatory capacity during exercise or physical activity. In the event EHS is suspected, prompt recognition and assessment of the patient’s internal body temperature and cognitive function is vital in order to guide the proper treatment plan. When EHS is confirmed, aggressive, whole-body cooling is required to cool the patient under the critical threshold for cell damage (40.83 °C) within 30 minutes of collapse to optimize the chances of survival without long-term sequelae. Following the EHS incident, considerations must be taken in order to augment the recovery process prior to returning back to full activity/duty/work. This chapter will provide an evidence-based review of the etiology, pathophysiology, and management and care of EHS for clinicians and scientists to utilize in order to optimize the care provided to athletes, soldiers, and laborers at risk for EHS.

Keywords

Hyperthermia Cold water immersion Rectal temperature Cool first, transport second Risk factors 

References

  1. 1.
    Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, et al. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2015;50(9):986–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lopez RM, Jardine JF. Exertional heat illnesses. In: Casa DJ, editor. Sport and physical activity in the heat: maximizing performance and safety. Cham: Springer; 2018. p. 313–30.CrossRefGoogle Scholar
  3. 3.
    Rav-Acha M, Hadad E, Epstein Y, Heled Y, Moran DS. Fatal exertional heat stroke: a case series. Am J Med Sci. 2004;328(2):84–7.CrossRefGoogle Scholar
  4. 4.
    Kerr ZY, Register-Mihalik JK, Pryor RR, Pierpoint LA, Scarneo SE, Adams WM, et al. The association between mandated preseason heat acclimatization guidelines and exertional heat illness during preseason high school American football practices. Environ Health Perspect. 2019;127(4):47003.PubMedCrossRefGoogle Scholar
  5. 5.
    Bouchama A, Knochel JP. Heat stroke. N Engl J Med. 2002;346(25):1978–88.PubMedCrossRefGoogle Scholar
  6. 6.
    Epstein Y, Roberts WO. The pathophysiology of heat stroke: an integrative view of the final common pathway. Scand J Med Sci Sports. 2011;21(6):742–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev. 2000;80(3):1055–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Cannon JG. Inflammatory cytokines in nonpathological states. News Physiol Sci. 2000;15:298–303.PubMedGoogle Scholar
  9. 9.
    Hietala J, Nurmi T, Uhari M, Pakarinen A, Kouvalainen K. Acute phase proteins, humoral and cell mediated immunity in environmentally-induced hyperthermia in man. Eur J Appl Physiol. 1982;49(2):271–6.CrossRefGoogle Scholar
  10. 10.
    Hammami MM, Bouchama A, Shail E, Aboul-Enein HY, Al-Sedairy S. Lymphocyte subsets and adhesion molecules expression in heatstroke and heat stress. J Appl Physiol Bethesda (1985). 1998;84(5):1615–21.CrossRefGoogle Scholar
  11. 11.
    Leon LR. Heat stroke and cytokines. Prog Brain Res. 2007;162:481–524.PubMedCrossRefGoogle Scholar
  12. 12.
    Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Yan Y-E, Zhao Y-Q, Wang H, Fan M. Pathophysiological factors underlying heatstroke. Med Hypotheses. 2006;67(3):609–17.PubMedCrossRefGoogle Scholar
  14. 14.
    Lin MT. Pathogenesis of an experimental heatstroke model. Clin Exp Pharmacol Physiol. 1999;26(10):826–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Epstein Y, Hadad E, Shapiro Y. Pathological factors underlying hyperthermia. J Therm Biol. 2004;29(7–8):487–94.CrossRefGoogle Scholar
  16. 16.
    Lambert GP. Role of gastrointestinal permeability in exertional heatstroke. Exerc Sport Sci Rev. 2004;32(4):185–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Vandermark LW, Adams WM, Asplund C, Hosokawa Y, Casa DJ. Heat stroke. In: Chopra JS, Sawhney IMS, editors. Neurology in tropics. 2nd ed. New Delhi: Reed Elsevier India; 2015. p. 896–908.Google Scholar
  18. 18.
    Lambert GP. Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the ‘canary in the coal mine’ during exercise-heat stress? Med Sport Sci. 2008;53:61–73.CrossRefGoogle Scholar
  19. 19.
    Leon LR, Helwig BG. Heat stroke: role of the systemic inflammatory response. J Appl Physiol (1985). 2010;109(6):1980–8.CrossRefGoogle Scholar
  20. 20.
    Belval LN, Casa DJ, Adams WM, Chiampas GT, Holschen JC, Hosokawa Y, et al. Consensus statement- prehospital care of exertional heat stroke. Prehosp Emerg Care. 2018;22(3):392–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Casa DJ, Pagnotta KD, Pinkus DP, Mazerolle SM. Should coaches be in charge of care for medical emergencies in high school sports? Athl Train Sports Health Care. 2009;1(4):144–6.CrossRefGoogle Scholar
  22. 22.
    Casa DJ, Becker SM, Ganio MS, Brown CM, Yeargin SW, Roti MW, et al. Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train. 2007;42(3):333–42.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Ganio MS, Brown CM, Casa DJ, Becker SM, Yeargin SW, McDermott BP, et al. Validity and reliability of devices that assess body temperature during indoor exercise in the heat. J Athl Train. 2009;44(2):124–35.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Miller KC, Hughes LE, Long BC, Adams WM, Casa DJ. Validity of core temperature measurements at 3 rectal depths during rest, exercise, cold-water immersion, and recovery. J Athl Train. 2017;52(4):332–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Huggins R, Glaviano N, Negishi N, Casa DJ, Hertel J. Comparison of rectal and aural core body temperature thermometry in hyperthermic, exercising individuals: a meta-analysis. J Athl Train. 2012;47(3):329–38.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lee SM, Williams WJ, Fortney Schneider SM. Core temperature measurement during supine exercise: esophageal, rectal, and intestinal temperatures. Aviat Space Environ Med. 2000;71(9):939–45.PubMedGoogle Scholar
  27. 27.
    Gagnon D, Lemire BB, Jay O, Kenny GP. Aural canal, esophageal, and rectal temperatures during exertional heat stress and the subsequent recovery period. J Athl Train. 2010;45(2):157–63.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Casa DJ, Guskiewicz KM, Anderson SA, Courson RW, Heck JF, Jimenez CC, et al. National athletic trainers’ association position statement: preventing sudden death in sports. J Athl Train. 2012;47(1):96–118.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, Roberts WO. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Binkley HM, Beckett J, Casa DJ, Kleiner DM, Plummer PE. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2002;37(3):329–43.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Casa DJ, Almquist J, Anderson SA, Baker L, Bergeron MF, Biagioli B, et al. The inter-association task force for preventing sudden death in secondary school athletics programs: best-practices recommendations. J Athl Train. 2013;48(4):546–53.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    National Athletic Trainers’ Association. Inter-association taskforce on exertional heat illnesses consensus statement [Internet]. 2003. https://www.nata.org/sites/default/files/inter-association-task-force-exertional-heat-illness.pdf.
  33. 33.
    Mazerolle SM, Scruggs IC, Casa DJ, Burton LJ, McDermott BP, Armstrong LE, et al. Current knowledge, attitudes, and practices of certified athletic trainers regarding recognition and treatment of exertional heat stroke. J Athl Train. 2010;45(2):170–80.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Nedimyer AK, Chandran A, Hirschorn RM, Adams WM, Pryor RR, Casa DJ, et al. Exertional heat stroke management strategies: a comparison of practice and intentions between athletic trainers who did and did not treat cases during high school football preseason (abstract). J Athl Train. 2019;54(6 Suppl):S-69.Google Scholar
  35. 35.
    Casa DJ, Kenny GP, Taylor NAS. Immersion treatment for exertional hyperthermia: cold or temperate water? Med Sci Sports Exerc. 2010;42(7):1246–52.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    DeMartini JK, Casa DJ, Stearns R, Belval L, Crago A, Davis R, Jardine J. Effectiveness of cold water immersion in the treatment of exertional heat stroke at the Falmouth Road Race. Med Sci Sports Exerc. 2014;47(2):240–5.CrossRefGoogle Scholar
  37. 37.
    Adams WM, Hosokawa Y, Casa DJ. The timing of exertional heat stroke survival starts prior to collapse. Curr Sports Med Rep. 2015;14(4):273–4.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Adams WM. Exertional heat stroke within secondary school athletics. Curr Sports Med Rep. 2019;18(4):149–53.CrossRefGoogle Scholar
  39. 39.
    McDermott BP, Casa DJ, Ganio MS, Lopez RM, Yeargin SW, Armstrong LE, et al. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review. J Athl Train. 2009;44(1):84–93.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Casa DJ, McDermott BP, Lee EC, Yeargin SW, Armstrong LE, Maresh CM. Cold water immersion: the gold standard for exertional heatstroke treatment. Exerc Sport Sci Rev. 2007;35(3):141–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Proulx CI, Ducharme MB, Kenny GP. Effect of water temperature on cooling efficiency during hyperthermia in humans. J Appl Physiol Bethesda Md (1985). 2003;94(4):1317–23.CrossRefGoogle Scholar
  42. 42.
    Miller KC, Truxton T, Long B. Temperate-water immersion as a treatment for hyperthermic humans wearing American football uniforms. J Athl Train. 2017;52(8):747–52.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Friesen BJ, Carter MR, Poirier MP, Kenny GP. Water immersion in the treatment of exertional hyperthermia: physical determinants. Med Sci Sports Exerc. 2014;46(9):1727–35.PubMedCrossRefGoogle Scholar
  44. 44.
    Sloan RE, Keatinge WR. Cooling rates of young people swimming in cold water. J Appl Physiol. 1973;35(3):371–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Lemire BB, Gagnon D, Jay O, Kenny GP. Differences between sexes in rectal cooling rates after exercise-induced hyperthermia. Med Sci Sports Exerc. 2009;41(8):1633–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Lemire B, Gagnon D, Jay O, Dorman L, DuCharme MB, Kenny GP. Influence of adiposity on cooling efficiency in hyperthermic individuals. Eur J Appl Physiol. 2008;104(1):67–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Miller KC, Long BC, Edwards J. Necessity of removing American football uniforms from humans with hyperthermia before cold-water immersion. J Athl Train. 2015;50(12):1240–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Miller KC, Swartz EE, Long BC. Cold-water immersion for hyperthermic humans wearing American football uniforms. J Athl Train. 2015;50(8):792–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hosokawa Y, Adams WM, Belval LN, Vandermark LW, Casa DJ. Tarp-assisted cooling as a method of whole-body cooling in hyperthermic individuals. Ann Emerg Med. 2017;69(3):347–52.PubMedCrossRefGoogle Scholar
  50. 50.
    Luhring KE, Butts CL, Smith CR, Bonacci JA, Ylanan RC, Ganio MS, et al. Cooling effectiveness of a modified cold-water immersion method after exercise-induced hyperthermia. J Athl Train. 2016;51(11):946–51.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Adams WM. An alternative method for treating exertional heat stroke: tarp-assisted cooling. Athl Train Sports Health Care. 2019;11(3):101–2.CrossRefGoogle Scholar
  52. 52.
    Goddard CJ, Warnes TW. Raised liver enzymes in asymptomatic patients: investigation and outcome. Dig Dis Basel Switz. 1992;10(4):218–26.CrossRefGoogle Scholar
  53. 53.
    American College of Sports Medicine, Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, et al. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72.CrossRefGoogle Scholar
  54. 54.
    Poussel M, Guerci P, Kaminsky P, Heymonet M, Roux-Buisson N, Faure J, et al. Exertional heat stroke and susceptibility to malignant hyperthermia in an athlete: evidence for a link? J Athl Train. 2015;50(11):1212–4.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sagui E, Montigon C, Abriat A, Jouvion A, Duron-Martinaud S, Canini F, et al. Is there a link between exertional heat stroke and susceptibility to malignant hyperthermia? PLoS One. 2015;10(8):e0135496.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Epstein Y. Heat intolerance: predisposing factor or residual injury? Med Sci Sports Exerc. 1990;22(1):29–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Moran DS, Erlich T, Epstein Y. The heat tolerance test: an efficient screening tool for evaluating susceptibility to heat. J Sport Rehabil. 2007;16(3):215–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Schermann H, Heled Y, Fleischmann C, Ketko I, Schiffmann N, Epstein Y, et al. The validity of the heat tolerance test in prediction of recurrent exertional heat illness events. J Sci Med Sport. 2018;21(6):549–52.PubMedCrossRefGoogle Scholar
  59. 59.
    Druyan A, Amit D, Makranz C, Moran D, Yanovich R, Epstein Y, et al. Heat tolerance in women—reconsidering the criteria. Aviat Space Environ Med. 2012;83(1):58–60.PubMedCrossRefGoogle Scholar
  60. 60.
    Lisman P, Kazman JB, O’Connor FG, Heled Y, Deuster PA. Heat tolerance testing: association between heat intolerance and anthropometric and fitness measurements. Mil Med. 2014;179(11):1339–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Druyan A, Ketko I, Yanovich R, Epstein Y, Heled Y. Refining the distinction between heat tolerant and intolerant individuals during a heat tolerance test. J Therm Biol. 2013;38(8):539–42.CrossRefGoogle Scholar
  62. 62.
    Casa DJ, editor. Sport and physical activity in the heat: maximizing performance and safety. Cham: Springer; 2018.Google Scholar
  63. 63.
    Johnson EC, Kolkhorst FW, Richburg A, Schmitz A, Martinez J, Armstrong LE. Specific exercise heat stress protocol for a triathlete’s return from exertional heat stroke. Curr Sports Med Rep. 2013;12(2):106–9.CrossRefGoogle Scholar
  64. 64.
    Mee JA, Doust J, Maxwell NS. Repeatability of a running heat tolerance test. J Therm Biol. 2015;49–50:91–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Roberts WO, Dorman JC, Bergeron MF. Recurrent heat stroke in a runner: race simulation testing for return to activity. Med Sci Sports Exerc. 2016;48(5):785–9.CrossRefGoogle Scholar
  66. 66.
    Hursel R, Westerterp-Plantenga MS. Thermogenic ingredients and body weight regulation. Int J Obes. 2010;34(4):659–69.CrossRefGoogle Scholar
  67. 67.
    Lyons J, Allsopp A, Bilzon J. Influences of body composition upon the relative metabolic and cardiovascular demands of load-carriage. Occup Med (Lond). 2005;55(5):380–4.CrossRefGoogle Scholar
  68. 68.
    Ricciardi R, Deuster PA, Talbot LA. Metabolic demands of body armor on physical performance in simulated conditions. Mil Med. 2008;173(9):817–24.PubMedCrossRefGoogle Scholar
  69. 69.
    Vaughan RA, Conn CA, Mermier CM. Effects of commercially available dietary supplements on resting energy expenditure: a brief report. ISRN Nutr. 2014;2014:650264.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Adams WM, Belval LN. Return-to-activity following exertional heat stroke. Athl Train Sports Health Care. 2018;10(1):5–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • William M. Adams
    • 1
    Email author
  • Rebecca L. Stearns
    • 2
  • Douglas J. Casa
    • 2
  1. 1.Department of KinesiologyUniversity of North Carolina at GreensboroGreensboroUSA
  2. 2.Korey Stringer Institute, Department of Kinesiology, University of ConnecticutStorrsUSA

Personalised recommendations