Advertisement

18F-NaF

  • Ferdinando CalabriaEmail author
  • Orazio Schillaci
Chapter

Abstract

18F-NaF PET/CT is a well-established and validated imaging tool for imaging skeletal system. The bio-distribution represents blood flow that varies among different bones; due to urinary excretion, bladder and kidneys can be normally visualized. The role of this tracer has been well demonstrated in imaging bone metastases, with sensitivity superior to 18F-FDG PET/CT and other conventional imaging modalities. In particular, 18F-NaF PET/CT can detect bone malignant involvement before lesions can be radiologically documented; however, a lack of specificity should be considered, due to the possibility of uptake in benign diseases as calcium deposits in brain and large arteries, osteoarthritis and post-traumatic lesions. Beyond oncology, this tracer can play a role in forensic use, evaluation of skeletal benign diseases, and atherosclerotic plaque.

18F-NaF uptake is also documented in meningioma, rheumatoid arthritis, amyloidosis, and lymphomas. Globally, nuclear medicine physicians must take into account the possibility of 18F-NaF uptake in all calcifications that can occur in benign or malignant diseases.

Keywords

Bone 18F-NaF Skeleton Metastases PET/CT Pitfalls 

Abbreviations

18F-FDG

18F-fluorodeoxyglucose

99mTc-MDP

99mTc-methyldiphosfonate

CT

Computed tomography

EANM

European Association of Nuclear Medicine and Molecular Imaging

FDA

Food and Drug Administration

MIP

Maximum intensity projection

PET/CT

Positron emission computed tomography/computed tomography

SPECT

Single photon emission computed tomography/computed tomography

SUV

Standardized uptake value

References

  1. 1.
    Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med. 1962;3:332–4.PubMedGoogle Scholar
  2. 2.
    Hockley BG, Scott PJ. An automated method for preparation of [(18)F]sodium fluoride for injection, USP to address the technetium-99m isotope shortage. Appl Radiat Isot. 2010;68:117–9.CrossRefGoogle Scholar
  3. 3.
    Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633–42.PubMedGoogle Scholar
  4. 4.
    Araz M, Aras G, Küçük ÖN. The role of 18F-NaF PET/CT in metastatic bone disease. J Bone Oncol. 2015;16:92–7.CrossRefGoogle Scholar
  5. 5.
    Minamimoto R, Mosci C, Jamali M, et al. Semiquantitative analysis of the biodistribution of the combined 18F-NaF and 18F-FDG administration for PET/CT imaging. J Nucl Med. 2015;56:688–94.CrossRefGoogle Scholar
  6. 6.
    Morbelli S, Fiz F, Piccardo A, et al. Divergent determinants of 18F-NaF uptake and visible calcium deposition in large arteries: relationship with Framingham risk score. Int J Cardiovasc Imaging. 2014;30:439–47.CrossRefGoogle Scholar
  7. 7.
    Kawaguchi M, Tateishi U, Shizukuishi K, et al. 18F-fluoride uptake in bone metastasis: morphologic and metabolic analysis on integrated PET/CT. Ann Nucl Med. 2010;24:241–7.CrossRefGoogle Scholar
  8. 8.
    Damle NA, Bal C, Bandopadhyaya GP, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31:262–9.CrossRefGoogle Scholar
  9. 9.
    Langsteger W, Rezaee A, Pirich C, et al. 18F-NaF-PET/CT and 99mTc-MDP bone scintigraphy in the detection of bone metastases in prostate Cancer. Semin Nucl Med. 2016;46:491–501.CrossRefGoogle Scholar
  10. 10.
    Beheshti M, Rezaee A, Geinitz H, et al. Evaluation of prostate cancer bone metastases with 18F-NaF and 18F-fluorocholine PET/CT. J Nucl Med. 2016;57:55S–60S.CrossRefGoogle Scholar
  11. 11.
    Beheshti M, Vali R, Waldenberger P, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74.CrossRefGoogle Scholar
  12. 12.
    De Giorgi U, Caroli P, Burgio SL, et al. Early outcome prediction on 18F-fluorocholine PET/CT in metastatic castration-resistant prostate cancer patients treated with abiraterone. Oncotarget. 2014;15:12448–58.Google Scholar
  13. 13.
    Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med. 2003;44:930–42.PubMedGoogle Scholar
  14. 14.
    Beheshti M, Mottaghy FM, Payche F, et al. (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42:1767–77.CrossRefGoogle Scholar
  15. 15.
    Guo HH, Moradi F, Iagaru A. Clinical significance of extraskeletal computed tomography findings on 18F-NaF PET/CT performed for osseous metastatic disease evaluation. Nucl Med Commun. 2016;37:975–82.CrossRefGoogle Scholar
  16. 16.
    Kairemo K, Joensuu T. Radium-223-dichloride in castration resistant metastatic prostate Cancer-preliminary results of the response evaluation using F-18-fluoride PET/CT. Diagnostics (Basel). 2015;13:413–27.CrossRefGoogle Scholar
  17. 17.
    Cook G Jr, Parker C, Chua S, et al. 18F-fluoride PET: changes in uptake as a method to assess response in bone metastases from castrate-resistant prostate cancer patients treated with 223Ra-chloride (Alpharadin). EJNMMI Res. 2011;7:4.CrossRefGoogle Scholar
  18. 18.
    Tan AL, Tanner SF, Waller ML, et al. High-resolution [18F]fluoride positron emission tomography of the distal interphalangeal joint in psoriatic arthritis-a bone-enthesis-nail complex. Rheumatology. 2013;52:898–904.CrossRefGoogle Scholar
  19. 19.
    Strobel K, Fischer DR, Tamborrini G, et al. 18F-fluoride PET/CT for detection of sacroiliitis in ankylosing spondylitis. Eur J Nucl Med Mol Imaging. 2010;37:1760–5.CrossRefGoogle Scholar
  20. 20.
    Aratake M, Yoshifumi T, Takahashi A, et al. Evaluation of lesion in a spontaneous osteonecrosis of the knee using 18F-fluoride positron emission tomography. Knee Surg Sports Traumatol Arthrosc. 2009;17:53–9.CrossRefGoogle Scholar
  21. 21.
    Chakraborty D, Mittal BR, Kamaleshwaran KK, et al. Urinary bladder carcinoma associated with Paget’s disease of skull: imaging findings on Tc99m-MDP bone scintigraphy, F18-fluoride PET/CT and F18-FDG PET/CT. Indian J Nucl Med. 2011;26:42–3.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ovadia D, Metser U, Lievshitz G, et al. Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop. 2007;27:90–3.CrossRefGoogle Scholar
  23. 23.
    Sterner T, Pink R, Freudenberg L, et al. The role of [18F]fluoride positron emission tomography in the early detection of aseptic loosening of total knee arthroplasty. Int J Surg. 2007;5:99–104.CrossRefGoogle Scholar
  24. 24.
    Drubach LA. Pediatric bone scanning: clinical indication of (18)F NaF PET/CT. PET Clin. 2012;7:293–301.CrossRefGoogle Scholar
  25. 25.
    Drubach LA, Sapp MV, Laffin S, et al. Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol. 2008;33(7):776–9.CrossRefGoogle Scholar
  26. 26.
    Drubach LA, Johnston PR, Newton AW, et al. Skeletal trauma in child abuse: detection with 18F-NaF PET. Radiology. 2010;255:173–81.CrossRefGoogle Scholar
  27. 27.
    Segall G, Delbeke D, Stabin MG, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.CrossRefGoogle Scholar
  28. 28.
    Idolazzi L, Salgarello M, Gatti D, et al. 18F-fluoride PET/CT for detection of axial involvement in ankylosing spondylitis: correlation with disease activity. Ann Nucl Med. 2016;30:430–4.CrossRefGoogle Scholar
  29. 29.
    Watanabe T, Takase-Minegishi K, Ihata A, et al. (18)F-FDG and (18)F-NaF PET/CT demonstrate coupling of inflammation and accelerated bone turnover in rheumatoid arthritis. Mod Rheumatol. 2016;26:180–7.CrossRefGoogle Scholar
  30. 30.
    Quirce R, Martínez-Rodríguez I, Banzo I, et al. New insight of functional molecular imaging into the atheroma biology: 18F-NaF and 18F-FDG in symptomatic and asymptomatic carotid plaques after recent CVA. Preliminary results. Clin Physiol Funct Imaging. 2016;36:499–503.CrossRefGoogle Scholar
  31. 31.
    Dweck MR, Chow MW, Joshi NV, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48.CrossRefGoogle Scholar
  32. 32.
    Fiz F, Bauckneht M, Piccardo A, et al. Metabolic and densitometric correlation between atherosclerotic plaque and trabecular bone: an 18F-Natrium-fluoride PET/CT study. Am J Nucl Med Mol Imaging. 2018;20:387–96.Google Scholar
  33. 33.
    Reilly CC, Raynor WY, Hong AL, et al. Diagnosis and monitoring of osteoporosis with 18F-sodium fluoride PET: an unavoidable path for the foreseeable future. Semin Nucl Med. 2018;48:535–40.CrossRefGoogle Scholar
  34. 34.
    Cascini GL, Cuccurullo V, Mansi L. 18FNa-fluoride has a higher extraction with respect to 99mTc-methylene diphosphonate: mismatch in a case of meningioma. Rev Esp Med Nucl Imagen Mol. 2014;33:52–3.PubMedGoogle Scholar
  35. 35.
    Thenkondar A, Jafari L, Sooriash R, et al. 18F-NaF PET demonstrating unusual focal tracer activity in the brain. Clin Nucl Med. 2017;42:127–8.CrossRefGoogle Scholar
  36. 36.
    Van Der Gucht A, Galat A, Rosso J, et al. [18F]-NaF PET/CT imaging in cardiac amyloidosis. J Nucl Cardiol. 2016;23:846–9.CrossRefGoogle Scholar
  37. 37.
    Zheng W, Chen Y, Huang Z, et al. Burkitt lymphoma presented as acute lower Back pain and revealed by 18F-NaF PET/CT. Clin Nucl Med. 2016;41:e253–4.CrossRefGoogle Scholar
  38. 38.
    Shao F, Wu J, Huang Z, et al. Serendipitous detection of Hodgkin lymphoma by 18F-NaF PET/CT. Clin Nucl Med. 2016;41:815–8.CrossRefGoogle Scholar
  39. 39.
    Asmar A, Simonsen L, Svolgaard B, et al. Unexpected diffuse 18F-NaF uptake in the lung parenchyma in a patient with severe hypercalcemia due to myelomatosis. Clin Nucl Med. 2017;42:68–9.CrossRefGoogle Scholar
  40. 40.
    Seraj SM, Al-Zaghal A, Østergaard B, et al. Identification of heterotopic ossification using 18F-NaF PET/CT. Clin Nucl Med. 2019;44:319–20.CrossRefGoogle Scholar
  41. 41.
    Chou YH, Ko KY, Cheng MF, et al. 18F-NaF PET/CT images of cardiac metastasis from osteosarcoma. Clin Nucl Med. 2016;41:708–9.CrossRefGoogle Scholar
  42. 42.
    Zou Y, Chen Y, Huang Z, et al. Elevated 99mTc-MDP and 18F-NaF uptake in a bladder stone. Clin Nucl Med. 2016;41:732–3.CrossRefGoogle Scholar
  43. 43.
    Calabria F. Fifty shades of meningioma: challenges and perspectives of different PET molecular probes. Clin Transl Imaging. 2017;5:403–405.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Nuclear Medicine and Theranostics“Mariano Santo” HospitalCosenzaItaly
  2. 2.Department of Biomedicine and PreventionUniversity “Tor Vergata”RomeItaly
  3. 3.Department of Nuclear Medicine and Molecular ImagingIRCCS NeuromedPozzilliItaly

Personalised recommendations