Lipogenesis Pathway: Radiolabeled Choline

  • Ferdinando CalabriaEmail author
  • Marzia Colandrea
  • Giuseppe L. Cascini
  • Orazio Schillaci


The radiolabeled choline is a PET/CT radiopharmaceutical useful in detecting tumors with high lipogenesis rate.

For this reason choline, labeled with 11C or 18F, is currently used as PET/CT tracer in the management of prostate cancer patients. Despite that its role is still unclear during the early stage of this disease, several studies support usefulness of radiolabeled choline PET/CT in evaluating patients with biochemical relapse of prostate cancer, following radiotherapy or radical prostatectomy for curative intent. In particular, the detection rate of radiolabeled choline of distant lymph node or bone metastases is strictly linked to PSA serum level at the time of the scan. Consequently, the diagnosis of tumor relapse in oligo-metastatic patients could help in choosing the best therapeutic approach in order to improve patient prognosis and quality of life.

Other tumors present malignant behavior but cannot be examined with 18F-FDG PET/CT, due to low grade of glucose metabolism expressed: under study is the potential role of radiolabeled choline PET/CT in the management of patients with bladder cancer and bronchioloalveolar and hepatocellular carcinoma.

The exact knowledge of the normal in vivo distribution of radiolabeled choline can help nuclear physicians in avoiding misdiagnosis, due to the abnormal tracer uptake in several benign or malignant conditions.

From the experience with these diagnostic pitfalls, several researchers proposed a feasible role of radiolabeled choline PET/CT in the management of patients with brain tumors or in the diagnosis of hyperparathyroidism.


18F-Methylcholine 18F-Ethylcholine 11C-Choline PET/CT Prostate cancer Brain tumors 















68Ga-Prostate-specific membrane antigen


Apparent diffusion coefficient


Food and Drug Administration


Magnetic resonance imaging


Magnetic resonance spectroscopy


Prostate-specific antigen


Single photon emission tomography/computed tomography


Maximum standardized uptake value


  1. 1.
    No Authors listed. FDA approves 11C-choline for PET in prostate cancer. J Nucl Med. 2012;53(12):11N.Google Scholar
  2. 2.
    Lodi F, Malizia C, Castellucci P, et al. Synthesis of oncological [11C]radiopharmaceuticals for clinical PET. Nucl Med Biol. 2012;39:447–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;13:187–99.Google Scholar
  4. 4.
    Schmaljohann J, Schirrmacher E, Wängler B, et al. Fully automated SPE-based synthesis and purification of 2-[18F]fluoroethyl-choline for human use. Nucl Med Biol. 2011;38:165–70.PubMedCrossRefGoogle Scholar
  5. 5.
    DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42:1805–14.PubMedGoogle Scholar
  6. 6.
    Haeffner EW. Studies on choline permeation through the plasma membrane and its incorporation into phosphatidyl choline of Ehrlich-Lettré-ascites tumor cells in vitro. Eur J Biochem. 1975;3:219–28.CrossRefGoogle Scholar
  7. 7.
    Calabria F, Gallo G, Schillaci O, et al. Bio-distribution, imaging protocols and diagnostic accuracy of PET with tracers of lipogenesis in imaging prostate cancer: a comparison between 11C-choline, 18F-fluoroethylcholine and 18F-methylcholine. Curr Pharm Des. 2015;21:4738–47.PubMedCrossRefGoogle Scholar
  8. 8.
    DeGrado TR, Coleman RE, Wang S, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res. 2001;1:110–7.Google Scholar
  9. 9.
    Balogova S, Huchet V, Kerrou K, et al. Detection of bronchioloalveolar cancer by means of PET/CT and 18F-fluorocholine, and comparison with 18F-fluorodeoxyglucose. Nucl Med Commun. 2010;31:389–97.PubMedGoogle Scholar
  10. 10.
    Sassa N, Kato K, Abe S, et al. Evaluation of 11C-choline PET/CT for primary diagnosis and staging of urothelial carcinoma of the upper urinary tract: a pilot study. Eur J Nucl Med Mol Imaging. 2014;41:2232–341.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rischke HC, Beck T, Vach W, et al. Furosemide diminishes 18F-fluoroethylcholine uptake in prostate cancer in vivo. Eur J Nucl Med Mol Imaging. 2014;41:2074–82.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Castilla-Lièvre MA, Franco D, Gervais P, et al. Diagnostic value of combining (11)C-choline and (18)F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2016;43:852–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Schillaci O, Calabria F, Tavolozza M, et al. 18F-choline PET/CT physiological distribution and pitfalls in image interpretation: experience in 80 patients with prostate cancer. Nucl Med Commun. 2010;31:39–45.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Calabria F, Chiaravalloti A, Schillaci O. (18)F-choline PET/CT pitfalls in image interpretation: an update on 300 examined patients with prostate cancer. Clin Nucl Med. 2014;39:122–30.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Mertens K, Ham H, Deblaere K, et al. Distribution patterns of 18F-labelled fluoromethylcholine in normal structures and tumors of the head: a PET/MRI evaluation. Clin Nucl Med. 2012;37:196–203.CrossRefGoogle Scholar
  16. 16.
    Schwarzenböck S, Souvatzoglou M, Krause BJ. Choline PET and PET/CT in primary diagnosis and staging of prostate cancer. Theranostics. 2012;2:318–30.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Mertens K, Slaets D, Lambert B, et al. PET with (18)F-labelled choline-based tracers for tumour imaging: a review of the literature. Eur J Nucl Med Mol Imaging. 2010;37:2188–93.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Calabria F, Chiaravalloti A, Tavolozza M, et al. Evaluation of extraprostatic disease in the staging of prostate cancer by F-18 choline PET/CT: can PSA and PSA density help in patient selection? Nucl Med Commun. 2013;34:733–40.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Di Biagio D, Chiaravalloti A, Tavolozza M, et al. Detection of local recurrence of prostate cancer after radical prostatectomy: is there a role for early (18)F-FCH PET/CT? Ann Nucl Med. 2015;29:861–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Poncet D, Arnoux V, Descotes JL, et al. Biochemical recurrence after curative treatment for localized prostate cancer: performance of choline PET/CT in the assessment of local recurrence. Prog Urol. 2015;25:325–30.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Cimitan M, Bortolus R, Morassut S, et al. [18F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging. 2006;33:1387–98.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Quero L, Vercellino L, de Kerviler E, et al. 18F-choline PET/CT and prostate MRI for staging patients with biochemical relapse after irradiation for prostate cancer. Clin Nucl Med. 2015;40:e492–5.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Calabria F, Rubello D, Schillaci O. The optimal timing to perform 18F/11C-choline PET/CT in patients with suspicion of relapse of prostate cancer: trigger PSA versus PSA velocity and PSA doubling time. Int J Biol Markers. 2014;29:423–30.CrossRefGoogle Scholar
  24. 24.
    Schillaci O, Calabria F, Tavolozza M, et al. Influence of PSA, PSA velocity and PSA doubling time on contrast-enhanced 18F-choline PET/CT detection rate in patients with rising PSA after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2012;39:589–96.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Castellucci P, Ceci F, Graziani T, et al. Early biochemical relapse after radical prostatectomy: which prostate cancer patients may benefit from a restaging 11C-choline PET/CT scan before salvage radiation therapy? J Nucl Med. 2014;55:1424–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Vagnoni V, Brunocilla E, Bianchi L, et al. State of the PET/CT with 11-choline and 18F-fluorocholine in the diagnosis and follow-up of localized and locally advanced prostate cancer. Arch Esp Urol. 2015;68(3):354–70.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Marzola MC, Chondrogiannis S, Ferretti A, et al. Role of 18F-choline PET/CT in biochemically relapsed prostate cancer after radical prostatectomy: correlation with trigger PSA, PSA velocity, PSA doubling time, and metastatic distribution. Clin Nucl Med. 2013;38:e26–32.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Chiaravalloti A, Di Biagio D, Tavolozza M, et al. PET/CT with 18F-choline after radical prostatectomy in patients with PSA ≤2 ng/ml. Can PSA velocity and PSA doubling time help in patient selection? Eur J Nucl Med Mol Imaging. 2016;43:1418–24.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Svatek R, Karakiewicz PI, Shulman M, et al. Pre-treatment nomogram for disease-specific survival of patients with chemotherapy-naive androgen independent prostate cancer. Eur Urol. 2006;49:666–74.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Jadvar H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J Nucl Med. 2011;52:81–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Evangelista L, Bombardieri E. Prostate-specific antigen and radiolabelled choline PET/CT for the assessment of response to therapy: synergy or conflicting? Eur J Nucl Med Mol Imaging. 2016;43:200–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Picchio M, Spinapolice EG, Fallanca F, et al. [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:13–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Koo PJ, David Crawford E. 18F-NaF PET/CT and 11C-choline PET/CT for the initial detection of metastatic disease in prostate cancer: overview and potential utilization. Oncology (Williston Park). 2014;28:1057–62.Google Scholar
  34. 34.
    Hofman MS, Hicks RJ, Maurer T, et al. Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics. 2018;38:200–17.PubMedCrossRefGoogle Scholar
  35. 35.
    Smith CP, Laucis A, Harmon S, et al. Novel imaging in detection of metastatic prostate cancer. Curr Oncol Rep. 2019;5:31.CrossRefGoogle Scholar
  36. 36.
    Kuten J, Mabjeesh NJ, Lerman H, et al. Ga-PSMA PET/CT staging of newly diagnosed intermediate- and high-risk prostate cancer. Isr Med Assoc J. 2019;21:100–4.PubMedGoogle Scholar
  37. 37.
    Evangelista L, Bonavina MG, Bombardieri E. Clinical results and economic considerations of 68Ga-PSMA and radiolabeled choline in prostate cancer. Nucl Med Biol. 2017;50:47–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Sachpekidis C, Pan L, Hadaschik BA, et al. 68Ga-PSMA-11 PET/CT in prostate cancer local recurrence: impact of early images and parametric analysis. Am J Nucl Med Mol Imaging. 2018;8:351–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Schwenck J, Rempp H, Reischl G, et al. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging. 2017;44:92–101.PubMedCrossRefGoogle Scholar
  40. 40.
    Cantiello F, Gangemi V, Cascini GL, et al. Diagnostic accuracy of 64Copper prostate-specific membrane antigen positron emission tomography/computed tomography for primary lymph node staging of intermediate- to high-risk prostate cancer: our preliminary experience. Urology. 2017;106:139–45.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Cantiello F, Crocerossa F, Russo GI, et al. Comparison between 64Cu-PSMA-617 PET/CT and 18F-choline PET/CT imaging in early diagnosis of prostate cancer biochemical recurrence. Clin Genitourin Cancer. 2018;16:385–91.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Giesel FL, Knorr K, Spohn F, et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J Nucl Med. 2019;60:362–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Shetty D, Patel D, Le K, et al. Pitfalls in gallium-68 PSMA PET/CT interpretation-A pictorial review. Tomography. 2018;4:182–93.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Calabria F, Gangemi V, Gullà D, et al. 64Cu-PSMA uptake in meningioma: a potential pitfall of a promising radiotracer. Rev Esp Med Nucl Imagen Mol. 2017;36:335–6.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Sheikhbahaei S, Afshar-Oromieh A, Eiber M, et al. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging. 2017;44:2117–36.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Bertagna F, Bertoli M, Bosio G, et al. Diagnostic role of radiolabelled choline PET or PET/CT in hepatocellular carcinoma: a systematic review and meta-analysis. Hepatol Int. 2014;8:493–500.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bieze M, Bennink RJ, El-Massoudi Y, et al. The use of 18F-fluoromethylcholine PET/CT in differentiating focal nodular hyperplasia from hepatocellular adenoma: a prospective study of diagnostic accuracy. Nucl Med Commun. 2013;34:146–54.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Nanni C, Zamagni E, Cavo M, et al. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol. 2007;20:68.CrossRefGoogle Scholar
  49. 49.
    Vadrucci M, Gilardi L, Grana CM. Breast cancer incidentally detected by 18F-choline PET/CT in a patient with recurrent prostate carcinoma. Clin Nucl Med. 2016;41:892–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Hugentobler A, Gilbeau L, Talbot JN, et al. 18F-fluorocholine PET/CT of incidental male breast cancer. Clin Nucl Med. 2017;42:e56–7.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    de Almeida Schirmer BG, de Araujo MR, Silveira MB, et al. Comparison of [18F]Fluorocholine and [18F]Fluordesoxyglucose for assessment of progression, lung metastasis detection and therapy response in murine 4T1 breast tumor model. Appl Radiat Isot. 2018;140:278–88.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ahmad Saad FF, Zakaria MH, Appanna B. PET/CT analysis of 21 patients with breast cancer: physiological distribution of 18F-choline and diagnostic pitfalls. J Int Med Res. 2018;46:3138–48.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Treglia G, Giovannini E, Di Franco D, et al. The role of positron emission tomography using carbon-11 and fluorine-18 choline in tumors other than prostate cancer: a systematic review. Ann Nucl Med. 2012;26:451–61.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Fallanca F, Giovacchini G, Picchio M, et al. Incidental detection by [11C]choline PET/CT of meningiomas in prostate cancer patients. Q J Nucl Med Mol Imaging. 2009;53:417–21.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Fraioli F, Shankar A, Hargrave D, et al. 18F-fluoroethylcholine (18F-Cho) PET/MRI functional parameters in pediatric astrocytic brain tumors. Clin Nucl Med. 2015;40:e40–5.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Imperiale A, Bergerat JP, Saussine C, et al. Isolated cerebellar metastasis from prostate adenocarcinoma diagnosed by 18F-fluorocholine PET/CT: a rare but not impossible complication. Eur J Nucl Med Mol Imaging. 2014;41:397–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Narayanan TK, Said S, Mukherjee J, et al. A comparative study on the uptake and incorporation of radiolabeled methionine, choline and fluorodeoxyglucose in human astrocytoma. Mol Imaging Biol. 2002;4:147–56.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Ohtani T, Kurihara H, Ishiuchi S, et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med. 2001;28:1664.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Rottenburger C, Hentschel M, Kelly T, et al. Comparison of C-11 methionine and C-11 choline for PET imaging of brain metastases: a prospective pilot study. Clin Nucl Med. 2011;36:639–42.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Roelcke U, Bruehlmeier M, Hefti M, et al. F-18 choline PET does not detect increased metabolism in F-18 fluoroethyltyrosine-negative low-grade gliomas. Clin Nucl Med. 2012;37:e1–3.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Takenaka S, Asano Y, Shinoda J, et al. Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo). 2014;54:280–9.CrossRefGoogle Scholar
  62. 62.
    Takenaka S, Shinoda J, Asano Y, et al. Metabolic assessment of monofocal acute inflammatory demyelination using MR spectroscopy and (11)C-methionine-, (11)C-choline-, and (18)F-fluorodeoxyglucose-PET. Brain Tumor Pathol. 2011;28:229.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Cascini GL, Restuccia A, De Vincenti T, et al. A vascular lesion mimicking a primitive brain tumour in a patient examined by (18)F-choline PET/CT and MRI. Rev Esp Med Nucl Imagen Mol. 2015;34:335–6.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Mapelli P, Busnardo E, Magnani P, et al. Incidental finding of parathyroid adenoma with 11C-choline PET/CT. Clin Nucl Med. 2012;37:593–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Quak E, Lheureux S, Reznik Y, et al. F18-choline, a novel PET tracer for parathyroid adenoma? J Clin Endocrinol Metab. 2013;98:3111–2.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Michaud L, Balogova S, Burgess A, et al. A pilot comparison of 18F-fluorocholine PET/CT, ultrasonography and 123I/99mTc-sestaMIBI dual-phase dual-isotope scintigraphy in the preoperative localization of hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism: influence of thyroid anomalies. Medicine (Baltimore). 2015;94:e1701.CrossRefGoogle Scholar
  67. 67.
    Lezaic L, Rep S, Sever MJ, et al. 18F-Fluorocholine PET/CT for localization of hyperfunctioning parathyroid tissue in primary hyperparathyroidism: a pilot study. Eur J Nucl Med Mol Imaging. 2014;41:2083–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Takesh M, Haberkorn U, Strauss LG, et al. Incidental detection and monitoring of spontaneous recovery of sarcoidosis via fluorine-18-fluoroethyl-choline positron emission tomography/computed tomography. Hell J Nucl Med. 2012;15:63–5.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ankrah AO, van der Werf TS, de Vries EF, et al. PET/CT imaging of Mycobacterium tuberculosis infection. Clin Transl Imaging. 2016;4:131–44.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wetter A, Lipponer C, Nensa F, et al. Quantitative evaluation of bone metastases from prostate cancer with simultaneous [18F] choline PET/MRI: combined SUV and ADC analysis. Ann Nucl Med. 2014;28:405–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Paparo F, Piccardo A, Bacigalupo L, et al. Value of bimodal (18)F-choline-PET/MRI and trimodal (18)F-choline-PET/MRI/TRUS for the assessment of prostate cancer recurrence after radiation therapy and radical prostatectomy. Abdom Imaging. 2015;40:1772–87.PubMedCrossRefGoogle Scholar
  72. 72.
    Lapa C, Linsenmann T, Monoranu CM, et al. Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med. 2014;55:1611–6.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Tripathi M, Sharma R, D'Souza M, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2009;34:878–83.PubMedCrossRefGoogle Scholar
  74. 74.
    Calabria FF, Barbarisi M, Gangemi V, et al. Molecular imaging of brain tumors with radiolabeled choline PET. Neurosurg Rev. 2016;41:67–76.PubMedCrossRefGoogle Scholar
  75. 75.
    Gizewska A, Witkowska-Patena E, Stembrowicz-Nowakowska Z, et al. Brain metastases in patient with prostate cancer found in 18F-choline PET/CT. Nucl Med Rev Cent East Eur. 2015;18:39–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Evangelista L, Cimitan M, Hodolič M, et al. The ability of 18F-choline PET/CT to identify local recurrence of prostate cancer. Abdom Imaging. 2015;40:3230–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Krohn T, Verburg FA, Pufe T, et al. [(68)Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur J Nucl Med Mol Imaging. 2015;42:210–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Verburg FA, Pfister D, Heidenreich A, et al. Extent of disease in recurrent prostate cancer determined by [(68)Ga]PSMA-HBED-CC PET/CT in relation to PSA levels, PSA doubling time and Gleason score. Eur J Nucl Med Mol Imaging. 2016;43:397–403.PubMedCrossRefGoogle Scholar
  79. 79.
    Calabria F, Schillaci O. The biodistribution of the radiolabeled kinds of choline in male patients, assessed by PET/CT. Nucl Med Commun. 2016;37:329–30.PubMedCrossRefGoogle Scholar
  80. 80.
    van Raalte DH, Vlot MC, Zwijnenburg A, et al. F18-choline PET/CT: a novel tool to localize parathyroid adenoma. Clin Endocrinol (Oxf). 2015;82:910–2.CrossRefGoogle Scholar
  81. 81.
    Fallanca F, Picchio M, Spinapolice EG, et al. Imaging of a thymoma incidentally detected by C-11 choline PET/CT. Clin Nucl Med. 2011;36:134–5.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Calabria F, D’Auria S, Sannino P, Schillaci O. A case of thymoma detected by 18F-choline positron emission tomography/computed tomography. Eur J Nucl Med Mol Imaging. 2011;38(3):602.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Calabria FF, Crusco S, Cicciò C, et al. A case of colon cancer incidentally detected by 18F-choline PET/CT. Clin Nucl Med. 2013;38:982–3.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bagni O, Filippi L, Schillaci O. Incidental detection of colorectal cancer via 18F-choline PET/CT in a patient with recurrent prostate cancer: usefulness of early images. Clin Nucl Med. 2015;40:328–30.CrossRefGoogle Scholar
  85. 85.
    Paudel J, Singla N, Bhattacharya A, et al. Incidental detection of plasma cell neoplasm on 18F-choline PET/CT imaging. Clin Nucl Med. 2019;44:140–1.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    García Vicente AM, Núñez García A, Soriano Castrejón AM, et al. Pitfalls with 18F-choline PET/CT in patients with prostate cancer. Rev Esp Med Nucl Imagen Mol. 2013;32:37–9.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Beheshti M, Haroon A, Bomanji JB, et al. Fluorocholine PET/computed tomography: physiologic uptake, benign findings, and pitfalls. PET Clin. 2014;9:299–306.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Calabria F, Calabria E, Chiaravalloti A, et al. A case of intracranial meningioma detected by 18F-choline PET/CT and examined by PET/MRI fusion imaging. Rev Esp Med Nucl Imagen Mol. 2014;33:306–7.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Calabria F. Fifty shades of meningioma: challenges and perspectives of different PET molecular probes. Clin Transl Imaging. 2017;5:403–5.CrossRefGoogle Scholar
  90. 90.
    Calabria F, Chiaravalloti A, Cicciò C, et al. PET/CT with 18F-choline: physiological whole bio-distribution in male and female subjects and diagnostic pitfalls on 1000 prostate cancer patients: 18F-choline PET/CT bio-distribution and pitfalls. A southern Italian experience. Nucl Med Biol. 2017;51:40–54.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ferdinando Calabria
    • 1
    Email author
  • Marzia Colandrea
    • 2
  • Giuseppe L. Cascini
    • 3
  • Orazio Schillaci
    • 4
    • 5
  1. 1.Department of Nuclear Medicine and Theranostics“Mariano Santo” HospitalCosenzaItaly
  2. 2.Division of Nuclear MedicineEuropean Institute of OncologyMilanItaly
  3. 3.Nuclear Medicine Unit, Department of Diagnostic ImagingMagna Graecia UniversityCatanzaroItaly
  4. 4.Department of Biomedicine and PreventionUniversity “Tor Vergata”RomeItaly
  5. 5.Department of Nuclear Medicine and Molecular ImagingIRCCS NeuromedPozzilliItaly

Personalised recommendations