• Ferdinando CalabriaEmail author
  • Orazio Schillaci


Considering intrinsic limits of 18F-FDG PET/CT in brain and neuroendocrine tumors imaging, several radiopharmaceuticals have been developed to investigate these diseases. Among others, a promising tracer is 18F-DOPA, due to its very low rate of physiological distribution in normal brain structures of white and gray matter and the affinity for somatic neuroendocrine tumors. Similar to other amino acid tracers, 18F-DOPA PET/CT is useful in diagnosis of patients with suspected low-grade brain tumor recurrence, because of low signal ratio in normal brain white and gray matter, in particular in comparison to 18F-FDG PET/CT. MRI is the gold standard of diagnosis but 18F-DOPA PET/CT is adjuvant to diagnosis. PET/MRI with 18F-DOPA or other amino acid tracers will play a prevalent role in brain tumor imaging.

Another field of application of 18F-DOPA can be the evaluation of substantia nigra metabolism, since the dopamine uptake is reduced in Parkinson’s disease.

Neuroendocrine tumors may also show uptake of 18F-DOPA: in this field, 18F-DOPA PET/CT can be a valid tool in the assessment of primitive tumor or secondary lesions. In recurrent medullary carcinoma of the thyroid, this diagnostic tool has an important prognostic value in predicting disease progression and mortality rate. However, in other neuroendocrine tumors, PET/CT imaging should be performed with analogs of somatostatin tracers.


18F-DOPA PET/CT Brain tumors Neuroendocrine tumors Parkinson’s disease PET/MRI 











Aromatic amino acid decarboxylase


Cortico-basal degeneration


Catechol-o-methyl transferase

LAT1 and LAT2

L-Type amino acid transporter 1 and 2




Multiple systemic atrophy


Neuroendocrine tumors


Positron emission tomography/computed tomography


Positron emission tomography/magnetic resonance imaging


Progressive supranuclear palsy


Single photon emission computed tomography


  1. 1.
    Lemaire C, Libert L, Franci X, et al. Automated production at the curie level of no-carrier-added 6-[(18) F]fluoro- l-dopa and 2-[(18) F]fluoro- l-tyrosine on a FASTlab synthesizer. J Labelled Comp Radiopharm. 2015;58:281–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Calabria FF, Calabria E, Gangemi V, et al. Current status and future challenges of brain imaging with 18F-DOPA PET for movement disorders. Hell J Nucl Med. 2016;19:33–41.Google Scholar
  3. 3.
    Calabria FF, Chiaravalloti A, Jaffrain-Rea ML, et al. 18F-DOPA PET/CT physiological distribution and pitfalls: experience in 215 patients. Clin Nucl Med. 2016;41:753–60.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Melega WP, Hoffman JM, Luxen A, et al. The effects of carbidopa on the metabolism of 6-[18F]fluoro-L-dopa in rats, monkeys and humans. Life Sci. 1990;47:149–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Doudet DJ, Dejesus OT, Chan GLY et al. Quantitative functional brain Imaging with Positron Emission Tomography. Chapter 58. Imaging of the dopamine presynaptic system by PET: 6-[18F]-L-DOPA versus 6-[F]Fluoro-l-m-tyrosine. 1998.Google Scholar
  6. 6.
    Hisatomi Y, Okumura K, Nakamura K, et al. Flow cytometric isolation of endodermal progenitors from mouse salivary gland differentiate into hepatic and pancreatic lineages. Hepatology. 2004;39:667–75.PubMedCrossRefGoogle Scholar
  7. 7.
    Chiaravalloti A, Fiorentini A, Villani V, et al. Factors affecting 18F FDOPA standardized uptake value in patients with primary brain tumors after treatment. Nucl Med Biol. 2015;42:355–99.PubMedCrossRefGoogle Scholar
  8. 8.
    Becherer A, Karanikas G, Szabó M, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging. 2003;30:1561–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Tripathi M, Sharma R, D’Souza M, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2019;34:878–83.CrossRefGoogle Scholar
  10. 10.
    Ledezma CJ, Chen W, Sai V, et al. 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: initial experience. Eur J Radiol. 2009;71:242–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Minn H, Kemppainen J, Kauhanen S, et al. 18F-fluorodihydroxyphenylalanine in the diagnosis of neuroendocrine tumors. PET Clin. 2014;9:27–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Kauhanen S, Seppänen M, Ovaska J, et al. The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer. 2009;16:255–65.PubMedCrossRefGoogle Scholar
  13. 13.
    Taïeb D, Timmers HJ, Hindié E, et al. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2012;39:1977–95.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gornes H, Vaysse C, Deslandres M, et al. Discovery of a neuroendocrine tumor of the caecum by mammary metastasis using 18F-DOPA-PET. J Obstet Gynaecol Res. 2018;44:2195–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Imperiale A, Rust E, Gabriel S, et al. 18F-fluorodihydroxyphenylalanine PET/CT in patients with neuroendocrine tumors of unknown origin: relation to tumor origin and differentiation. J Nucl Med. 2014;55:367–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Filippi L, Scopinaro F, Pelle G, et al. Molecular response assessed by (68)Ga-DOTANOC and survival after (90)Y microsphere therapy in patients with liver metastases from neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2016;43:432–40.CrossRefGoogle Scholar
  17. 17.
    Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35:500–16.PubMedCrossRefGoogle Scholar
  18. 18.
    Treglia G, Castaldi P, Villani MF, et al. Comparison of different positron emission tomography tracers in patients with recurrent medullary thyroid carcinoma: our experience and a review of the literature. Recent Results Cancer Res. 2013;194:385–93.PubMedCrossRefGoogle Scholar
  19. 19.
    Slavikova K, Montravers F, Treglia G, et al. What is currently the best radiopharmaceutical for the hybrid PET/CT detection of recurrent medullary thyroid carcinoma? Curr Radiopharm. 2013;6:96–105.PubMedCrossRefGoogle Scholar
  20. 20.
    Caobelli F, Chiaravalloti A, Evangelista L, et al. Predictive and prognostic value of 18F-DOPA PET/CT in patients affected by recurrent medullary carcinoma of the thyroid. Ann Nucl Med. 2018;32:7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chondrogiannis S, Grassetto G, Marzola MC, et al. 18F-DOPA PET/CT biodistribution consideration in 107 consecutive patients with neuroendocrine tumours. Nucl Med Commun. 2012;33:179–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Huang Z, Zuo C, Guan Y, et al. Misdiagnoses of 11C-choline combined with 18F-FDG PET imaging in brain tumours. Nucl Med Commun. 2008;29:354–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Utriainen M, Komu M, Vuorinen V, et al. Evaluation of brain tumor metabolism with [11C]choline PET and 1H-MRS. J Neurooncol. 2003;62:329–38.PubMedCrossRefGoogle Scholar
  24. 24.
    Lapa C, Linsenmann T, Monoranu CM, et al. Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med. 2014;55:1611–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Morana G, Puntoni M, Garrè ML, et al. Ability of (18)F-DOPA PET/CT and fused (18)F-DOPA PET/MRI to assess striatal involvement in paediatric glioma. Eur J Nucl Med Mol Imaging. 2016;43:1664–472.PubMedCrossRefGoogle Scholar
  26. 26.
    Law I, Albert NL, Arbizu J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;6(3):540–57.CrossRefGoogle Scholar
  27. 27.
    Tripathi M, Sharma R, Jaimini A, et al. Striatal "function-metabolism" mismatch on F-18 FDG/F-18 FDOPA PET/CT. Clin Nucl Med. 2009;34:703–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Fueger BJ, Czernin J, Cloughesy T, et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med. 2010;51:1532–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Kratochwil C, Combs SE, Leotta K, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol. 2014;16:434–40.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Calabria F, Schillaci O. Recurrent glioma and crossed cerebellar diaschisis in a patient examined with 18F-DOPA and 18F-FDG PET/CT. Clin Nucl Med. 2012;37:878–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Fraioli F, Shankar A, Hargrave D, et al. 18F-fluoroethylcholine (18F-Cho) PET/MRI functional parameters in pediatric astrocytic brain tumors. Clin Nucl Med. 2015;40:e40–5.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain. 1996;119(2):585–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Morrish PK, Rakshi JS, Bailey DL, et al. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry. 1998;64:314–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Vingerhoets FJ, Snow BJ, Lee CS, et al. Longitudinal fluorodopa positron emission tomographic studies of the evolution of idiopathic parkinsonism. Ann Neurol. 1994;36:759–64.PubMedCrossRefGoogle Scholar
  35. 35.
    Nurmi E, Ruottinen HM, Bergman J, et al. Rate of progression in Parkinson’s disease: a 6-[18F]fluoro-L-dopa PET study. Mov Disord. 2001;16:608–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Braak H, Del Tredici K, Rüb U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Pal PK, Leung J, Hedrich K, et al. [18F]-Dopa positron emission tomography imaging in early-stage, non-parkin juvenile parkinsonism. Mov Disord. 2002;17:789–94.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Burn DJ, Sawle GV, Brooks DJ. Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry. 1994;57:278–584.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Nagasawa H, Tanji H, Nomura H, et al. PET study of cerebral glucose metabolism and fluorodopa uptake in patients with corticobasal degeneration. J Neurol Sci. 1996;139:210–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Eidelberg D, Dhawan V, Moeller JR, et al. The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography. J Neurol Neurosurg Psychiatry. 1991;54:856–62.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sawle GV, Brooks DJ, Marsden CD, et al. Corticobasal degeneration. A unique pattern of regional cortical oxygen hypometabolism and striatal fluorodopa uptake demonstrated by positron emission tomography. Brain. 1991;114:541–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Eshuis SA, Maguire RP, Leenders KL, et al. Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2006;33:200–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Eshuis SA, Jager PL, Maguire RP, et al. Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imaging. 2009;36:454–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Heiss WD, Hilker R. The sensitivity of 18-fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson’s disease. Eur J Neurol. 2004;11:5–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Ciurleo R, Di Lorenzo G, Bramanti P, et al. Magnetic resonance spectroscopy: an in vivo molecular imaging biomarker for Parkinson’s disease? Biomed Res Int. 2014;2014:519816.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Teune LK, Renken RJ, de Jong BM, et al. Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging. Neuroimage Clin. 2014;3:240–4.CrossRefGoogle Scholar
  47. 47.
    Struck AF, Hall LT, Kusmirek JE, et al. (18)F-DOPA PET with and without MRI fusion, a receiver operator characteristics comparison. Am J Nucl Med Mol Imaging. 2012;2:475–82.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Chondrogiannis S, Marzola MC, Al-Nahhas A, et al. Normal biodistribution pattern and physiologic variants of 18F-DOPA PET imaging. Nucl Med Commun. 2013;34:1141–9.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Balan KK. Visualization of the gall bladder on F-18 FDOPA PET imaging: a potential pitfall. Clin Nucl Med. 2005;30:23–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Okada M, Shimono T, Komeya Y, et al. Adrenal masses: the value of additional fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) in differentiating between benign and malignant lesions. Ann Nucl Med. 2009;23:349–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Hernández Pinzón J, Mena D, Aguilar M, et al. Radionecrosis versus disease progression in brain metastasis. Value of (18)F-DOPA PET/CT/MRI. Rev Esp Med Nucl Imagen Mol. 2016;35:332–5.PubMedGoogle Scholar
  52. 52.
    Calabria FF, Chiaravalloti A, Calabria EN, et al. 18F-DOPA PET/CT and MRI findings in a patient with multiple meningiomas. Clin Nucl Med. 2016;41:636–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Sala Q, Metellus P, Taieb D, et al. 18F-DOPA, a clinically available PET tracer to study brain inflammation? Clin Nucl Med. 2014;39:e283–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Nuclear Medicine and Theranostics“Mariano Santo” HospitalCosenzaItaly
  2. 2.Department of Biomedicine and PreventionUniversity “Tor Vergata”RomeItaly
  3. 3.Department of Nuclear Medicine and Molecular ImagingIRCCS NeuromedPozzilliItaly

Personalised recommendations