Advertisement

Postharvest Treatments to Control Ripening

  • Anthony Keith Thompson
  • Suriyan Supapvanich
  • Jiraporn Sirison
Chapter
Part of the SpringerBriefs in Food, Health, and Nutrition book series (BRIEFSFOOD)

Abstract

Controlling the initiation of ripening and the speed that ripening progresses is crucial in bananas especially in their international trade. Ripening is mainly controlled by controlling temperature, the gaseous environment around the fruit, the atmospheric pressure in the stores and, to a lesser extent, humidity. Also, several chemical treatments have been tried with different degrees of success. These methods of controlling ripening initiation and the subsequent speed of ripening are discussed.

References

  1. Aghdam, M. S., Asghari, M., Khorsandi, O., & Mohayeji, M. (2014). Alleviation of postharvest chilling injury of tomato fruit by salicylic acid treatment. Journal of Food Science and Technology, 51, 2815–2820.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ahmad, S., & Thompson, A. K. (2007). Effect of modified atmosphere storage on the ripening and quality of ripe banana fruit. Acta Horticulturae, 741, 273–278.CrossRefGoogle Scholar
  3. Ahmad, S., Thompson, A. K., & Perviez, M. A. (2006). Effect of harvest maturity stage and hand positions on the ripening behaviour and quality of banana fruit. Acta Horticulturae, 741.Google Scholar
  4. Ahmed, Z. F. R., & Palta, J. P. (2011). A natural lipid, lysophosphatidylethanolamine, may promote ripening while reducing senescence in banana fruit. HortScience, 46, 273.CrossRefGoogle Scholar
  5. Ahmed, Z. F. R., & Palta, J. P. (2015). A postharvest dip treatment with lysophophatidylethanolamine, a natural phospholipid, may retard senescence and improve the shelf life of banana fruit. HortScience, 50, 1035–1040.CrossRefGoogle Scholar
  6. Ahmed, Z. F. R., & Palta, J. P. (2016). Postharvest dip treatment with a natural lysophospholipid plus soy lecithin extended the shelf life of banana fruit. Postharvest Biology and Technology, 113, 58–65.CrossRefGoogle Scholar
  7. Akkaravessapong, P., Joyce, D. C., & Turner, D. W. (1992). The relative humidity at which bananas are stored or ripened does not influence their susceptibility to mechanical damage. Scientia Horticulturae, 52, 265–268.CrossRefGoogle Scholar
  8. Al-Zaemey, A. B. S., Falana, I. B., & Thompson, A. K. (1989). Effects of permeable fruit coatings on the storage life of plantains and bananas. Aspects of Applied Biology, 20, 73–80.Google Scholar
  9. Amaro, A. L., & Almeida, D. P. F. (2013). Lysophosphatidylethanolamine effects on horticultural commodities: A review. Postharvest Biology and Technology, 78, 92–102.CrossRefGoogle Scholar
  10. Anonymous. (2019). Ripelock. https://www.agrofresh.com/technologies/ripelock/. Accessed 7 April 2019.
  11. Anuchai, J., Chumthongwattana, M., Tepsorn, R., & Supapavanich, S. (2018). Efficiency of salicylic immersion using fine-bubble technique on quality of Musa AAA fruit during ripening. International Journal of Agricultural Technology, 14, 1003–1016.Google Scholar
  12. Apelbaum, A., Aharoni, Y., & Temkin-Gorodeiski, N. (1977). Effects of sub-atmospheric pressure on the ripening processes of banana fruits. Tropical Agriculture, 54, 39–46.Google Scholar
  13. Archana, U., & Sivachandiran, S. (2015). Effect of application of gibberellic acid (GA3) on shelf-life of banana. International Journal of Research in Agriculture and Food Sciences, 3, 1–4.Google Scholar
  14. Badran, A. M. (1969). Controlled atmosphere storage of green bananas. U.S. Patent 17 June 3, 450, 542.Google Scholar
  15. Bagnato, N., Sedgley, M., Barrett, R., & Klieber, A. (2003). Effect of ethanol vacuum infiltration on the ripening of ‘Cavendish bananas’ cv. Williams. Postharvest Biology and Technology, 27, 337–340.CrossRefGoogle Scholar
  16. Bangerth, F. (1984). Changes in sensitivity for ethylene during storage of apple and banana fruits under hypobaric conditions. Scientia Horticulturae, 24, 151.CrossRefGoogle Scholar
  17. Banks, N. H. (1984). Some Effects of TAL Pro-long coating on ripening bananas. Journal of Experimental Botany, 35, 127–137.CrossRefGoogle Scholar
  18. Bhardwaj, C. L., Jones, H. F., & Smith, I. H. (1984). A study of the migration of externally applied sucrose esters of fatty acids through the skins of banana, apple and pear fruits. Journal of the Science of Food and Agriculture, 35, 322–331.CrossRefGoogle Scholar
  19. Blackbourn, H. D., Jeger, M. J., John, P., & Thompson, A. K. (1990). Inhibition of degreening in the peel of bananas ripened at tropical temperatures, III changes in plastid ultrastructure and chlorophyll-protein complexes accompanying ripening in bananas and plantains. Annals of Applied Biology, 117, 147–161.CrossRefGoogle Scholar
  20. Bowden, A. P. (1993). Modified atmosphere packaging of ‘Cavendish’ and ‘Apple’ bananas. MSc thesis Cranfield University.Google Scholar
  21. Broughton, W. J., Chan, B. E., & Kho, H. L. (1978). Maturation of Malaysian fruits. II. Storage conditions and ripening of banana Musa sapientum var ‘Pisang Emas’. Malaysian Agricultural Research and Development Institute. Research Bulletin, 7, 28–37.Google Scholar
  22. Burg, S. P. (2004). Postharvest physiology and hypobaric storage of fresh produce. Wallingford: CAB International.CrossRefGoogle Scholar
  23. Burg, S. P., & Burg, E. A. (1965). Relationship between ethylene production and ripening of bananas. Botanical Gazette, 126, 200–204.CrossRefGoogle Scholar
  24. Burg, S. P., & Burg, E. A. (1967). Molecular requirements for the biological activity of ethylene. Plant Physiology, 42, 144–152.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chamara, D., Illeperuma, K., & Galappatty, P. T. (2000). Effect of modified atmosphere and ethylene absorbers on extension of storage life of ‘Kolikuttu’ banana at ambient temperature. Fruits, 55, 381–388.Google Scholar
  26. Chauhan, O. P., Raju, P. S., Dasgupta, D. K., & Bawa, A. S. (2006). Modified atmosphere packaging of banana (cv. Pachbale) with ethylene, carbon di-oxide and moisture scrubbers and effect on its ripening behaviour. American Journal of Food Technology, 1, 179–189.CrossRefGoogle Scholar
  27. Cheng, G., Yang, E., Lu, W., Jia, Y., Jiang, Y., & Duan, X. (2009). Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening. Journal of Agricultural and Food Chemistry, 57, 5799–5804.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Copisarow, M. (1935). The metabolism of fruit and vegetables in relation to their preservation. Journal of Pomology, XIV, 9–18.Google Scholar
  29. Davies, K., Hobson, G. E., & Grierson, D. (2006). Silver ions inhibit the ethylene-stimulated production of ripening-related mRNAs in tomato. Plant Cell and Environment, 11, 729–738.CrossRefGoogle Scholar
  30. De Martino, G., Mencarelli, F., & Golding, J. B. (2007). Preliminary investigation into the uneven ripening of banana (Musa sp.) peel. New Zealand Journal of Crop and Horticultural Science, 35, 193–199.CrossRefGoogle Scholar
  31. Deaquiz, Y. A., Álvarez-Herrera, J., & Fischer, G. (2014). Etileno y 1-MCP afectan el comportamiento poscosecha de frutos de pitahaya amarilla (Selenicereus megalanthus Haw.). Agronomía Colombiana, 32, 44–51.CrossRefGoogle Scholar
  32. Deng, Z., Jung, J., Simonsen, J., & Zhao, Y. (2017). Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). Food Chemistry, 232, 359–368.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Domínguez, M., Domínguez-Puigjaner, E., Saladié, M., & Vendrell, M. (1998). Effect of inhibitors of ethylene biosynthesis and action on ripening of bananas. Acta Horticulturae, 490, 519–528.CrossRefGoogle Scholar
  34. Dubery, I. A., van Rensburg, L. J., & Schabort, J. C. (1984). Malic enzyme activity and related Biochemical aspects during ripening of γ-irradiated mango fruit. Phytochemistry, 23, 1383–1386.CrossRefGoogle Scholar
  35. Farag, K. M., & Palta, J. P. (1993). Use of lysophosphatidylethanolamine, a natural lipid to retard tomato leaf and fruit senescence. Physiologia Plantarum, 87, 515–524.CrossRefGoogle Scholar
  36. Fernández-Falcón, M., Borges, A. A., & Borges-Pérez, A. (2003). Induced resistance to Fusarium wilt of banana by exogenous applications of indole acetic acid. Phytoprotection, 84, 149–153.CrossRefGoogle Scholar
  37. Finger, F. L., Puschmann, R., & Santos Barros, R. (1995). Effects of water loss on respiration, ethylene production and ripening of banana fruit. Revista Brasileira de Fisiologia Vegetal, 7, 115–118.Google Scholar
  38. George, J. B., & Marriott, J. (1982). The effect of some storage conditions on the storage life of plantains. Acta Horticulturae, 158, 439–447.Google Scholar
  39. George, J. B., & Marriott, J. (1985). The effect of some storage conditions on the storage life of plantains. Acta Horticulturae, 158, 439–448.CrossRefGoogle Scholar
  40. Hardenburg, R. E., Watada, A. E., & Wang C. Y. (1990). The commercial storage of fruits, vegetables and florist and nursery stocks. United States Department of Agriculture, Agricultural Research Service, Agriculture Handbook 66.Google Scholar
  41. Harris, D. R., Seberry, J. A., Wills, L. J., & Spohr, L. J. (2000). Effect of fruit maturity on efficiency of 1-methylcyclopropene to delay the ripening of bananas. Postharvest Biology and Technology, 20, 303–308.CrossRefGoogle Scholar
  42. Harvey R. B. (1928). Artificial ripening of fruits and vegetables. https://conservancy.umn.edu/bitstream/handle/11299/.../mn_1000_b_247.pdf?...1
  43. Hesselman, C. W., & Freebairn, H. T. (1969). Rate of ripening of initiated bananas as influenced by oxygen and ethylene. Journal of the American Society for Horticultural Science, 94, 635.Google Scholar
  44. Hong, J. H., Hwanga, S. K., Chunga, G., & Cowan, A. K. (2007). Influence of lysophosphatidylethanolamine application on fruit quality of Thompson seedless grapes. Journal of Applied Horticulture, 9, 112–114.Google Scholar
  45. Imahori, Y., Yamamoto, K., Tanaka, H., & Bai, J. (2013). Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas. Postharvest Biology and Technology, 77, 19–27.CrossRefGoogle Scholar
  46. Jansasithorn, R., & Kanlavanarat, S. (2006). Effect of 1-MCP on physiological changes in banana ´Khai´. Acta Horticulturae, 712, 723–728.CrossRefGoogle Scholar
  47. Jiang, Y., Joyce, D. C., & Macnish, A. J. (2000). Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. Journal of Plant Growth Regulation, 19, 106–111.PubMedCrossRefGoogle Scholar
  48. Joyce, D. C., Macnish, A. J., Hofman, P. J., Simons, D. H., & Reid, M. S. (1999). Use of 1-methylcyclopropene to modulate banana ripening. In A. K. Kanellis, C. Chang, H. Klee, A. B. Bleecker, J. C. Pech, & D. Grierson (Eds.), Biology and biotechnology of the plant hormone Ethylene II (pp. 189–190). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  49. Kahan, R. S., Nadel-Shifman, M., Temkin-Gorodeiski, N., Eisenberg, E., Zauberman, G., & Aharoni, Y. (1968). Effects of radiation on the ripening of bananas and avocado pears. In Preservation of fruits and vegetables by irradiation (pp. 3–11). Vienna: International Atomic Energy Agency.Google Scholar
  50. Kanellis, A. K., Loulakakis, K. A., Hassan, M., & Roubelakis-Angelakis, K. A. (1993). Biochemical and molecular aspects of low oxygen action on fruit ripening. In C. J. Pech, A. Latche, & C. Balague (Eds.), Cellular and molecular aspects of the plant hormone ethylene (pp. 117–122). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  51. Kang, C. K., Yang, Y. L., Chung, G. H., & Palta, J. P. (2003). Ripening promoting and ethylene evolution in red pepper (Capsicum annuum) as influenced by newly developed formulations of a natural lipid, lysophosphatidylethanolamine. Acta Horticulturae, 628, 317–322.CrossRefGoogle Scholar
  52. Kao, H. Y. (1971). Extension of storage life of bananas by gamma irradiation. In Disinfestation of fruit by irradiation (pp. 125–136). Vienna: International Atomic Energy Agency.Google Scholar
  53. Klieber, A., Bagnato, N., Barrett, R., & Sedgley, M. (2002). Effect of post-ripening nitrogen atmosphere storage on banana shelf-life, visual appearance and aroma. Postharvest Biology and Technology, 25, 15–24.CrossRefGoogle Scholar
  54. Kulkarni, S. G., Kudachikar, V. B., & Prakash, M. K. (2011). Studies on physico-chemical changes during artificial ripening of banana (Musa sp) variety ‘Robusta’. Journal of Food Science and Technology, 48, 730–734.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kumar, A., & Brahmachari, V. S. (2005). Effect of chemicals and packaging on ripening and storage behaviour of banana cv. Harichhaal (AAA) at ambient temperature. Horticultural Journal, 18, 86–90.Google Scholar
  56. Leng, P., Yuan, B., & Guo, Y. (2014). The role of abscisic acid in fruit ripening and responses to abiotic stress. Journal of Experimental Botany, 65, 4577–4588.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Littmann, M. D. (1972). Effect of water loss on the ripening of climacteric fruits. Queensland Journal of Agriculture and Animal Science, 29, 103–113.Google Scholar
  58. Liu, F. W. (1976a). Correlation between banana storage life and minimum treatment time required for ethylene response. Journal of the American Society for Horticultural Science, 101, 63–65.Google Scholar
  59. Liu, F. W. (1976b). Banana response to low concentration of ethylene. Journal of the American Society for Horticultural Science, 101, 222–225.Google Scholar
  60. Liu, F. W. (1976c). Storing ethylene pretreated bananas in controlled atmosphere and hypobared air. Journal of the American Society for Horticultural Science, 101, 198–201.Google Scholar
  61. Liu, R., Wang, Y., Qin, G., & Tian, S. (2016). Molecular basis of 1-methylcyclopropene regulating organic acid metabolism in apple fruit during storage. Postharvest Biology and Technology, 117, 57–63.CrossRefGoogle Scholar
  62. Lohani, S., Trivedi, P. K., & Nath, P. (2004). Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: Effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology, 31(2), 119–126.CrossRefGoogle Scholar
  63. Lurie, S. (2008). Regulation of ethylene biosynthesis in fruits by aminoethoxyvinyl glycine and 1-Methylcyclopropene. Acta Horticulturae, 796, 31–41.CrossRefGoogle Scholar
  64. Maneenuam, T., & Doorn, S. K. (2007). High oxygen levels promote peel spotting in banana fruit. Postharvest Biology and Technology, 43, 128–132.CrossRefGoogle Scholar
  65. Manjunatha, G., Lokesh, V., & Bhagyalakshmi, N. (2012). Nitric oxide-induced enhancement of banana fruit attributes and keeping quality. Acta Horticulturae, 934, 799–806.CrossRefGoogle Scholar
  66. Maqbool, M., Ali, A., Ramachandran, S., Smith, D. R., & Alderson, P. G. (2010). Control of postharvest anthracnose of banana using a new edible composition coating. Crop Protection, 29, 1136–1141.CrossRefGoogle Scholar
  67. Marchal, J., & Nolin, J. (1990). Fruit quality. Pre- and post-harvest physiology. Fruits Special issue, 119–122.Google Scholar
  68. Marchal, J., Nolin, J., & Letorey, J. (1988). Influence sur la maturation de I’enrobage de bananes avec du Semperfresh. Fruits, 43, 447–453.Google Scholar
  69. Matsumura, S., Tomizawa, N., Toki, A., Nishikawa, K., & Toshima, K. (1999). Novel poly(vinyl alcohol)-degrading enzyme and the degradation mechanism. Macromolecules, 23, 7753–7761.CrossRefGoogle Scholar
  70. Maxie, E. C., & Sommer, N. F. (1968). Changes in some chemical constituents in irradiated fruits and vegetables. In Preservation of fruits and vegetables by radiation (pp. 39–56). Vienna: International Atomic Energy Agency.Google Scholar
  71. Maxie, E. C., Amezquita, R., Hassan, B. M., & Johnson, C. F. (1968). Effect of gamma irradiation on the ripening of banana fruits. Proceedings of the American Society for Horticultural Science, 92, 235–244.Google Scholar
  72. Mercantilia. (1989). Guide to food transport – fruit and vegetables. Copenhagen: Mercantilia Publishers.Google Scholar
  73. Mladenoska, I. (2013). The preservation of the whole banana fruits by utilization of coconut oil-beeswax edible coatings. Proceedings of the 10th Symposium “Novel technologies and Economic Development”, Leskovac, pp. 13–20.Google Scholar
  74. Moradinezhad, F., Sedgley, M., Klieber, A., & Able, A. J. (2008). Variability of responses to 1-methycyclopropene by banana: Influence of time of year at harvest and fruit position in the bunch. Annual Applied Biology, 152, 223–234.CrossRefGoogle Scholar
  75. Moric, C. L. S., dos Passosa, N. A., Oliveirab, J. E., Mattosod, L. H. C., Moric, F. A., Carvalhoc, A. G., Fonsecac, A. S., & Tonolica, G. H. D. (2014). Electrospinning of Zzein/tannin bio-nanofibers. Industrial Crops and Products, 52, 298–304.CrossRefGoogle Scholar
  76. Murata, T. (2006). Physiological and biochemical studies of chilling injury in bananas. Physiologia Plantarum, 22, 401–411.CrossRefGoogle Scholar
  77. Nair, H., & Tung, H. F. (1988). Postharvest physiology and storage of Pisang Mas. Proceedings of the UKM simposium Biologi Kebangsaan ketiga, Kuala Lumpur, Nov. 22–24.Google Scholar
  78. Ncama, K., Magwaza, L. S., Mditshwa, A., & Tesfay, S. Z. (2018). Plant-based edible coatings for managing postharvest quality of fresh horticultural produce. Food Packaging and Shelf-life, 16, 157–167.CrossRefGoogle Scholar
  79. Ozgen, M., Farag, K. M., Ozgen, G., & Palta, J. P. (2005). Lysophosphatidylethanolamine accelerates color development and promotes shelf life of cranberries. HortSciences, 40, 127–130.CrossRefGoogle Scholar
  80. Palomer, X., Roig-Villanova, I., Grima-Calvo, D., & Vendrell, M. (2005). Effects of nitrous oxide treatment on the postharvest ripening of banana fruit. Postharvest Biology and Technology, 36, 167–175.CrossRefGoogle Scholar
  81. Pan, S. L., Huang, C. Y., Wang, H. B., Pang, X. Q., Huang, X. M., & Zhang, Z. Q. (2007). Hydrogen peroxide induced chilling-resistance of postharvest banana fruit. Journal of South China Agricultural University, 28, 34–37.Google Scholar
  82. Pantastico, E. B. (1975). Editor – Postharvest physiology, handling and utilization of tropical and sub-tropical fruits and vegetables. Westpoint: AVI Publishing Co.Google Scholar
  83. Pathak, N., Asif, M. H., Dhawan, P., Srivastava, M. K., & Nath, P. (2003). Expression and activities of ethylene biosynthesis enzymes during ripening in banana fruit and effect of 1-MCP treatment. Plant Growth Regulation, 40, 11–19.CrossRefGoogle Scholar
  84. Pelayo, C., Eduardo, V.de B. Vilas-Boas, Benichou, M., & Kader, A. A. (2003). Variability in responses of partially ripe bananas to 1-methylcyclopropene. Postharvest Biology and Technology, 28, 75–85.CrossRefGoogle Scholar
  85. Pinheiro, A. C. M., Boas, E.V.deB.V, & Mesquita, C. T. (2005). Action of 1-methylcyclopropene (1-MCP) on shelf life of ‘Apple’ banana. Revista Brasileira de Fruticultura, 27, 25–28.CrossRefGoogle Scholar
  86. Purgatto, E., Lajolo, F. M., Oliveira do Nascimento, J. R., & Cordenunsi, B. R. (2001). Inhibition of β-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening. Planta, 212, 823–828.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Purgatto, E., Olivera do Nascimento, J. R., Lajolo, F. M., & Cordenunsi, B. R. (2002). The onset of starch degradation during banana ripening is concomitant to changes in the control of free and conjugated form of indole-3-acetic acid. Journal of Plant Physiology, 159, 1105–1111.CrossRefGoogle Scholar
  88. Quazi, M. H., & Freebairn, H. T. (1970). The influence of ethylene oxygen and carbon dioxide on ripening of bananas. Botanical Gazette, 131, 5–14.CrossRefGoogle Scholar
  89. Robinson, J. C., & Saúco, V. G. (2010). Bananas and plantains (2nd ed.). Wallingford: CAB International.CrossRefGoogle Scholar
  90. Rossetto, M. R. M., Purgatto, E., do Nascimento, J. R. O., Lajolo, F. M., & Cordenuns, B. R. (2003). Effects of gibberellic acid on sucrose accumulation and sucrose biosynthesizing enzymes activity during banana ripening. Plant Growth Regulation, 41, 207–214.CrossRefGoogle Scholar
  91. Satyan, S., Scott, K. J., & Graham, D. (1992). Storage of banana bunches in sealed polyethylene tubes. Journal of Horticultural Science, 67, 283–287.CrossRefGoogle Scholar
  92. Scott, K. J., Blake, J. R., Strachan, G., Tugwell, B. L., & McGlasson, W. B. (1971). Transport of bananas at ambient temperatures using polyethylene bags. Tropical Agriculture, 48, 245–253.Google Scholar
  93. SeaLand. (1991). Shipping guide to perishables. SeaLand Services Inc., P.O. Box 800, Iselim, New Jersey 08830.Google Scholar
  94. Senna, M. M. H., Al-Shamrani, K. M., & Al-Arifi, A. S. (2014). Edible coating for shelf-life extension of fresh banana fruit based on gamma irradiated plasticized poly(vinyl alcohol)/carboxymethyl cellulose/tannin composites. Materials Sciences and Applications, 5, 395–415.CrossRefGoogle Scholar
  95. Seymour, G. B., Thompson, A. K., & John, P. (1987). Inhibition of degreening in the peel of bananas ripened at tropical temperatures. 1. Effect of high temperature on changes in the pulp and peel during ripening. Annals of Applied Biology, 110, 145–151.CrossRefGoogle Scholar
  96. Seymour, G. B., John, P., & Thompson, A. K. (1987a). Inhibition of degreening in the peel of bananas ripened at tropical temperature. 2. Role of ethylene, oxygen and carbon dioxide. Annals of Applied Biology, 110, 153–161.CrossRefGoogle Scholar
  97. Shorter, A. J., Scott, K. J., & Graham, D. (1987). Controlled atmosphere storage of bananas in bunches at ambient temperatures. CSIRO Food Research Queensland, 47, 61–63.Google Scholar
  98. Sisler, E. C. (1991). Ethylene-binding components in plants. In A. K. Mattoo & J. E. Suttle (Eds.), The plant hormone ethylene (pp. 81–99). Boca Raton: CRC Press.Google Scholar
  99. Sisler, E. C., & Blankenship, S. M. (1993). Diazocyclopentadiene (DACP) a light sensitive reagent for the ethylene receptor in plants. Plant Growth Regulation, 12, 125–132.CrossRefGoogle Scholar
  100. Sisler, E. C., & Lallu, N. (1994). Effect of diazocyclopentadiene (DACP) on tomato fruits harvested at different ripening stages. Postharvest Biology and Technology, 4, 245–254.CrossRefGoogle Scholar
  101. Snowdon, A. L. (1990). A colour atlas of postharvest diseases and disorders of fruits and vegetables. In General introduction and fruits (Vol. 1). London: Wolfe Scientific Ltd.Google Scholar
  102. Sun, L., Sun, Y., Zhang, M., Wang, L., Ren, J., & Cui, M. (2012). Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiology, 158, 283–298.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Supapvanich, S., & Promyou, S. (2013). Efficiency of salicylic acid application on postharvest perishable crops. In S. Hayat & A. A. M. Alyemei (Eds.), Salicylic acid: Plant growth and development (pp. 339–355). New York: Springer.CrossRefGoogle Scholar
  104. Surendranathan, K. K., & Nair, P. M. (1972). Properties of acidic and alkaline fructose 1,6- diphosphatease in gamma irradiated banana. Phytochemistry, 11, 119–123.CrossRefGoogle Scholar
  105. Surendranathan, K. K., & Nair, P. M. (1973). Alterations in carbohydrate metabolism of gamma irradiated Cavendish banana. Phytochemistry, 12, 241–246.CrossRefGoogle Scholar
  106. Surendranathan, K. K., & Nair, P. M. (1976). Stimulation of the glyoxalate shunt in gamma irradiated banana. Phytochemistry, 15, 371–774.CrossRefGoogle Scholar
  107. Tchango, J. T., Achard, R., & Ngalani, J. A. (1999). Etude des stades de recolte pour l’exportation par bateau, vers l’Europe, de trois cultivars de plantains produits au Cameroun. Fruits, 54, 215–224.Google Scholar
  108. Thomas, P. (1986). Radiation preservation of foods of plant origin. III. Tropical fruits: bananas, mangoes, and papayas. CRC Critical Reviews in Food Science and Nutrition, 23, 147–206.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Thomas, P., Dharkar, S. D., & Sreenivasan, A. (1971). Effect of gamma irradiation on the postharvest physiology of five banana varieties grown in India. Food Science, 36, 243–248.CrossRefGoogle Scholar
  110. Thompson, A. K., & Burden, O. J. (1995). Harvesting and fruit care. In S. Gowen (Ed.), Bananas and plantains (pp. 403–433). London: Chapman and Hall.CrossRefGoogle Scholar
  111. Thompson, A. K., Been, B. O., & Perkins, C. (1972). Handling, storage and marketing of plantains. Proceedings of the Tropical Region of the American Society of Horticultural Science, 16, 205–212.Google Scholar
  112. Thompson, A. K., Been, B. O., & Perkins, C. (1974). Effects of humidity on ripening of plantain bananas. Experientia, 30, 35–36.CrossRefGoogle Scholar
  113. Tiangco, E. L., Agillon, A. B., & Lizada, M. C. C. (1987). Modified atmosphere storage of ‘Saba’ bananas. ASEAN Food Journal, 3, 112–116.Google Scholar
  114. Toan, V. N., Hoang, V. L., Tan, V. L., Thanh, D. C., & Luan, V. L. (2011). Effects of aminoethoxyvinylglycine (AVG) spraying time at preharvest stage to ethylene biosynthesis of Cavendish banana (Musa AAA). Journal of Agricultural Science, 3, 206–211.Google Scholar
  115. Toan, V. N., Thanh, D. C., Le, V. H., Le, V. T., Truong, M. H., Thi Le, L. T., & Thi Thong, Q. A. (2010). Effect of near-harvest application of aminothoxyvinylglycine (AVG) on banana fruits during postharvest storage. Acta Horticulturae, 875, 163–168.CrossRefGoogle Scholar
  116. Tongdee, S. C. (1988). Banana postharvest handling improvements. Bangkok: Report of the Thailand Institute of Science and Technology Research.Google Scholar
  117. Truter, A. B., & Combrink, J. C. (1990). Controlled and modified atmosphere storage of bananas. Acta Horticulturae, 275, 631–638.CrossRefGoogle Scholar
  118. Ullah, H., Ahmad, S., Anwar, R., & Thompson, A. K. (2006). Effect of high humidity and water on the quality and ripening of banana fruit. International Journal of Biology, 8, 828–831.Google Scholar
  119. Vendrell, M. (1969). Acceleration and delay of ripening in banana fruit tissue by gibberellic acid. Australian Journal of Biological Sciences, 23, 553–559.CrossRefGoogle Scholar
  120. Vendrell, M. (1970). Acceleration and delay of ripening in banana fruit tissue by gibberellic acid. Australian Journal of Biological Sciences, 23, 553–560.CrossRefGoogle Scholar
  121. Wade, N. L. (1974). Effects of O2 concentration and Ethephon upon the respiration and ripening of banana fruits. Journal of Experimental Botany, 25, 955–964.CrossRefGoogle Scholar
  122. Wang, Y., Luo, Z., & Du, R. (2015a). Nitric oxide delays chlorophyll degradation and enhances antioxidant activity in banana fruits after cold storage. Acta Physiologiae Plantarum, 37, 74.  https://doi.org/10.1007/s11738-015-1821-z.CrossRefGoogle Scholar
  123. Wang, Y., Luo, Z., Khan, Z. U., Mao, L., & Ying, T. (2015b). Effect of nitric oxide on energy metabolism in postharvest banana fruit in response to chilling stress. Postharvest Biology and Technology, 108, 21–27.CrossRefGoogle Scholar
  124. Wardlaw, C. W. (1937). Tropical fruits and vegetables: An account of their storage and transport. Low Temperature Research Station, Trinidad Memoir 7, Reprinted from Tropical Agriculture Trinidad, 14.Google Scholar
  125. Wardlaw, C. W., & Leonard, E. R. (1940). The respiration of bananas during ripening at tropical temperatures, studies in tropical fruits. Low Temperature Research Station, Memoir 17.Google Scholar
  126. Wei, Y., & Thompson A. K. (1993). Modified atmosphere packaging of diploid bananas (Musa AA). Post-harvest Treatment of Fruit and Vegetables. COST’94 Workshop, September 14 to 15 1993, Leuven.Google Scholar
  127. Wills, R. B. H., McGlasson, B., Graham, D., & Joyce, D. (1998). Postharvest: An introduction to the physiology and handling of fruit, vegetables and ornamentals (4th ed.). Wallingford: CAB. International.Google Scholar
  128. Wu, B., Guo, Q., Li, Q., Ha, Y., Li, X., & Chen, W. (2014). Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance. Postharvest Biology and Technology, 92, 157–163.CrossRefGoogle Scholar
  129. Yang, S. F., & Pratt, H. K. (1978). The physiology of ethylene in wounded plant tissue. In G. Kahl (Ed.), Biochemistry of wounded plant tissues (pp. 595–622). Berlin: Walter de Gruyter.CrossRefGoogle Scholar
  130. Yang, S. F., Adams, D. O., Lizada, C., Yu, Y., Bradford, K. J., Cameron, A. C., & Hoffman, N. E. (1979). Mechanism and regulation of ethylene biosynthesis. In F. Skoog (Ed.), Plant growth substances 1979 (Proceedings in Life Sciences) (pp. 219–229). Berlin/Heidelberg: Springer.Google Scholar
  131. Yao, A. K., Koffi, D. M., Irié, Z. B., & Niamke, S. L. (2014). Conservation de la banane plantain (Musa AAB) à l’état vert par l’utilisation de films de polyéthylène de différentes épaisseurs. Journal of Animal & Plant Sciences, 23, 3677–3690.Google Scholar
  132. Zaman, W., Paul, D., Alam, K., Ibrahim, M., & Hassan, P. (2007). Shelf-life extension of banana (Musa sapientum) by gamma radiation. Journal of Bio-Science, 15, 47–53.CrossRefGoogle Scholar
  133. Zhang, M., Leng, P., Zhang, G., & Li, X. (2009). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 166, 1241–1252.PubMedCrossRefGoogle Scholar
  134. Zhang, M., Yuan, B., & Leng, P. (2009a). Cloning 9-cis-epoxycarotenoid dioxygenase (NCED) genes and the role of ABA on fruit ripening. Plant Signalling and Behaviour, 4, 460–463.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anthony Keith Thompson
    • 1
  • Suriyan Supapvanich
    • 1
  • Jiraporn Sirison
    • 1
  1. 1.King Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations