Advertisement

Advanced Behavioral Analyses Using Inferred Social Networks: A Vision

  • Irena Holubová
  • Martin SvobodaEmail author
  • Tomáš Skopal
  • David Bernhauer
  • Ladislav Peška
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1062)

Abstract

The success of many businesses is based on a thorough knowledge of their clients. There exists a number of supervised as well as unsupervised data mining or other approaches that allow to analyze data about clients, their behavior or environment. In our ongoing project focusing primarily on bank clients, we propose an innovative strategy that will overcome shortcomings of the existing methods. From a given set of user activities, we infer their social network in order to analyze user relationships and behavior. For this purpose, not just the traditional direct facts are incorporated, but also relationships inferred using similarity measures and statistical approaches, with both possibly limited measures of reliability and validity in time. Such networks would enable analyses of client characteristics from a new perspective and could provide otherwise impossible insights. However, there are several research and technical challenges making the outlined pursuit novel, complex and challenging as we outline in this vision paper.

Keywords

Inferred social networks Similarity Behavioral analysis 

References

  1. 1.
    Ang, J.C., Mirzal, A., Haron, H., Hamed, H.N.A.: Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(5), 971–989 (2016).  https://doi.org/10.1109/TCBB.2015.2478454CrossRefGoogle Scholar
  2. 2.
    Baesens, B., Vlasselaer, V.V., Verbeke, W.: Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection, 1st edn. Wiley, Hoboken (2015)CrossRefGoogle Scholar
  3. 3.
    Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14(2), 1–10 (2015).  https://doi.org/10.5334/dsj-2015-002CrossRefGoogle Scholar
  4. 4.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW 2011. LNCS, vol. 6811, pp. 346–359. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22450-8_27CrossRefGoogle Scholar
  5. 5.
    Cattuto, C., Quaggiotto, M., Panisson, A., Averbuch, A.: Time-varying social networks in a graph database: a Neo4j use case. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, pp. 11:1–11:6. ACM, New York (2013).  https://doi.org/10.1145/2484425.2484442
  6. 6.
    Čech, P., Maroušek, J., Lokoč, J., Silva, Y.N., Starks, J.: Comparing mapreduce-based k-NN similarity joins on hadoop for high-dimensional data. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 63–75. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69179-4_5CrossRefGoogle Scholar
  7. 7.
    Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014).  https://doi.org/10.1016/j.compeleceng.2013.11.024CrossRefGoogle Scholar
  8. 8.
    Chen, W., Lakshmanan, L.V., Castillo, C.: Information and Influence Propagation in Social Networks. Synthesis Lectures on Data Management, vol. 5, no. 4, pp. 1–177 (2013).  https://doi.org/10.2200/S00527ED1V01Y201308DTM037CrossRefGoogle Scholar
  9. 9.
    Date, C.J., Darwen, H., Lorentzos, N.A.: Temporal Data and the Relational Model. Elsevier, Amsterdam (2002)Google Scholar
  10. 10.
    Dy, J.G., Brodley, C.: Feature subset selection and order identification for unsupervised learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, October 2000Google Scholar
  11. 11.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)CrossRefGoogle Scholar
  12. 12.
    Islam, S.R., Eberle, W., Ghafoor, S.K.: Mining bad credit card accounts from OLAP and OLTP. CoRR abs/1807.00819 (2018). http://arxiv.org/abs/1807.00819
  13. 13.
    Katal, A., Wazid, M., Goudar, R.H.: Big data: issues, challenges, tools and good practices. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp. 404–409, August 2013.  https://doi.org/10.1109/IC3.2013.6612229
  14. 14.
    Kirchner, C., Gade, J.: Implementing social network analysis for fraud prevention (2011)Google Scholar
  15. 15.
    Kwon, O., Lee, N., Shin, B.: Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manag. 34(3), 387–394 (2014).  https://doi.org/10.1016/j.ijinfomgt.2014.02.002CrossRefGoogle Scholar
  16. 16.
    Lessmann, S., Baesens, B., Seow, H., Thomas, L.C.: Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. Eur. J. Oper. Res. 247(1), 124–136 (2015).  https://doi.org/10.1016/j.ejor.2015.05.030CrossRefzbMATHGoogle Scholar
  17. 17.
    Lin, M., Prabhala, N.R., Viswanathan, S.: Judging borrowers by the company they keep: friendship networks and information asymmetry in online peer-to-peer lending. Manag. Sci. 59(1), 17–35 (2013).  https://doi.org/10.1287/mnsc.1120.1560CrossRefGoogle Scholar
  18. 18.
    Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 4, 491–502 (2005)Google Scholar
  19. 19.
    Lookman, S., Nurcan, S.: A framework for occupational fraud detection by social network analysis. In: Proceedings of the CAiSE 2015 Forum at the 27th International Conference on Advanced Information Systems Engineering co-located with (CAiSE 2015), Stockholm, Sweden, 10 June 2015, pp. 221–228 (2015). http://ceur-ws.org/Vol-1367/paper-29.pdf
  20. 20.
    Nai, L., Xia, Y., Tanase, I.G., Kim, H., Lin, C.: GraphBIG: understanding graph computing in the context of industrial solutions. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 1–12, November 2015.  https://doi.org/10.1145/2807591.2807626
  21. 21.
    Ngai, E.W.T., Hu, Y., Wong, Y.H., Chen, Y., Sun, X.: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decis. Support Syst. 50(3), 559–569 (2011).  https://doi.org/10.1016/j.dss.2010.08.006CrossRefGoogle Scholar
  22. 22.
    Ozsoyoglu, G., Snodgrass, R.T.: Temporal and real-time databases: a survey. IEEE Trans. Knowl. Data Eng. 7(4), 513–532 (1995).  https://doi.org/10.1109/69.404027CrossRefGoogle Scholar
  23. 23.
    Quah, J.T.S., Sriganesh, M.: Real-time credit card fraud detection using computational intelligence. Expert Syst. Appl. 35(4), 1721–1732 (2008).  https://doi.org/10.1016/j.eswa.2007.08.093CrossRefGoogle Scholar
  24. 24.
    Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., Amblard, F.: Time-varying graphs and social network analysis: temporal indicators and metrics. In: 3rd AISB Social Networks and Multiagent Systems Symposium (SNAMAS), United Kingdom, pp. 32–38, May 2011. https://hal.archives-ouvertes.fr/hal-00854313
  25. 25.
    Singh, D.K., Patgiri, R.: Big graph: tools, techniques, issues, challenges and future directions. In: Sixth International Conference on Advances in Computing and Information Technology (ACITY 2016), pp. 119–128 (2016)Google Scholar
  26. 26.
    Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: a review. In: Data Classification: Algorithms and Applications (2014)Google Scholar
  27. 27.
    Vlasselaer, V.V., et al.: APATE: a novel approach for automated credit card transaction fraud detection using network-based extensions. Decis. Support Syst. 75, 38–48 (2015).  https://doi.org/10.1016/j.dss.2015.04.013CrossRefGoogle Scholar
  28. 28.
    Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)Google Scholar
  29. 29.
    Xia, Y., et al.: Graph analytics and storage. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 942–951, October 2014.  https://doi.org/10.1109/BigData.2014.7004326
  30. 30.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space Approach. Advances in Database Systems, vol. 32. Kluwer, Dordrecht (2006).  https://doi.org/10.1007/0-387-29151-2CrossRefzbMATHGoogle Scholar
  31. 31.
    Zhou, J.: Data mining for individual consumer credit default prediction under e-commence context: a comparative study. In: Proceedings of the International Conference on Information Systems - Transforming Society with Digital Innovation, ICIS 2017, Seoul, South Korea, 10–13 December 2017 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Faculty of Information TechnologyCzech Technical University in PraguePragueCzech Republic

Personalised recommendations