Advertisement

Question Formulation and Question Answering for Knowledge Graph Completion

  • Maria KhvalchikEmail author
  • Christian Blaschke
  • Artem Revenko
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1062)

Abstract

Knowledge graphs contain only a subset of what is true. Following recent success of Question Answering systems in outperforming humans, we employ the developed tools to complete knowledge graph. To create the questions automatically, we explore domain-specific lexicalization patterns. We outline the overall procedure and discuss preliminary results.

Keywords

Knowledge graph completion Question formulation Question Answering Link prediction 

References

  1. 1.
    Abedjan, Z., Naumann, F.: Improving RDF data through association rule mining. Datenbank-Spektrum 13(2), 111–120 (2013)CrossRefGoogle Scholar
  2. 2.
    Bhogal, J., Macfarlane, A., Smith, P.: A review of ontology based query expansion. Inf. Process. Manag. 43(4), 866–886 (2007)CrossRefGoogle Scholar
  3. 3.
    d’Amato, C., Staab, S., Tettamanzi, A.G.B., Minh, T.D., Gandon, F.: Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases. In: ACM 31, pp. 333–338 (2016)Google Scholar
  4. 4.
    Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018)Google Scholar
  5. 5.
    Ell, B., Harth, A.: A language-independent method for the extraction of RDF verbalization templates. In: INLG 2014, pp. 26–34 (2014)Google Scholar
  6. 6.
    Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule learning from knowledge graphs guided by embedding models. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00671-6_5CrossRefGoogle Scholar
  7. 7.
    Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL 2015, Long Papers,, vol. 1, pp. 687–696 (2015)Google Scholar
  8. 8.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI 29, pp. 2181–2187 (2015)Google Scholar
  9. 9.
    Sanchez-Cisneros, D., Aparicio Gali, F.: UEM-UC3M: an ontology-based named entity recognition system for biomedical texts. In: SemEval, pp. 622–627. Association for Computational Linguistics (2013)Google Scholar
  10. 10.
    Schutz, A., Buitelaar, P.: RelExt: a tool for relation extraction from text in ontology extension. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 593–606. Springer, Heidelberg (2005).  https://doi.org/10.1007/11574620_43CrossRefGoogle Scholar
  11. 11.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI 2014, pp. 1112–1119 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maria Khvalchik
    • 1
    Email author
  • Christian Blaschke
    • 1
  • Artem Revenko
    • 1
  1. 1.Semantic Web CompanyViennaAustria

Personalised recommendations