Advertisement

Max-Plus Algebraic Modelling of Cyclical Multi-assortment Manufacturing System

  • Jarosław StańczykEmail author
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 241)

Abstract

In this chapter, multi-assortment production systems are considered, which can be described as Discrete Event Systems (DES). Due to the implementation of a certain number of products, they are characterized by repetitive, cyclical (rhythmic) behavior. Analyzing multi-assortment, cyclic production, there are a number of phenomena that have a direct impact on the behavior of systems, such as ending the production of one product or launching, in an already existing production system, the production of an additional, new product. And it is the modeling of such phenomena that is presented in this chapter.

References

  1. 1.
    Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronisation Linearity. Wiley, New York (1992)Google Scholar
  2. 2.
    Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer, Berlin (2010)Google Scholar
  3. 3.
    Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  4. 4.
    Cuninghame-Green, R.: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, vol. 166. Springer, Berlin (1979)CrossRefGoogle Scholar
  5. 5.
    Darabi, H., Jafari, M., Manapure, S.: Finite automata decomposition for flexible manufacturing systems control and scheduling. IEEE Trans. Syst. Man Cybern. 33(2), 168–175 (2003)CrossRefGoogle Scholar
  6. 6.
    David-Henriet, X., Hardouin, L., Raisch, J.: Max-Plus-Linear Systems for Modeling and Control of Manufacturing Problems. In: Ghezzi, L., Hömberg, D., Landry, C. (eds.) Math for the Digital Factory, pp. 37–60. Springer (2017)Google Scholar
  7. 7.
    Gaubert, S.: Max-Plus: Methods and Applications of (max, +) Linear Algebra. Technical Report RR-3088, INRIA. https://hal.inria.fr/inria-00073603 (1997). Accessed 29 March 2019
  8. 8.
    Girault, C., Valk, R.: Petri Nets for Systems Engineering. Springer, Berlin (2003)CrossRefGoogle Scholar
  9. 9.
    Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work: Modeling and Analysis of Synchronized Systems. Princeton University Press, Princeton (2005)Google Scholar
  10. 10.
    Indriyani, D., Subiono, S.: Scheduling of the crystal sugar production system in sugar factory using max-plus algebra. Int. J. Comput. Appl. Math. 2(3), 33–37 (2016)CrossRefGoogle Scholar
  11. 11.
    Komenda, J., Lahaye, S., Boimond, J.L., van den Boom, T.J.: Max-plus algebra in the history of discrete event systems. Ann. Rev. Control 45, 240–249 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    León, F.P., Kiencke, U.: Ereignisdiskrete Systeme. Oldenbourg Verlag (2013)Google Scholar
  13. 13.
    Nambiar, A.N., Imaev, A., Judd, R.P., Carlo, H.J.: Production Planning Models using Max-Plus Algebra. In: Modrák, V., Pandian, R.S. (eds.) Operations Management Research and Cellular Manufacturing Systems, pp. 227–257. IGI Global (2012)Google Scholar
  14. 14.
    Papadopoulos, C.T., Li, J., O’Kelly, M.E.: A classification and review of timed markov models of manufacturing systems. Comput. Ind. Eng. 128(1), 219–244 (2019)CrossRefGoogle Scholar
  15. 15.
    Seleim, A., El Maraghy, H.: Max-plus modeling of manufacturing flow lines. In: Proceedings of \(47\)th CIRP Conference on Manufacturing Systems (CMS2014), vol. 17, pp. 302–307 (2014).  https://doi.org/10.1016/j.procir.2014.01.133CrossRefGoogle Scholar
  16. 16.
    Stańczyk, J.: Max-Plus Algebra Toolbox for Matlab, ver. 1.7. http://gen.up.wroc.pl/stanczyk/mpa/ (2016). Accessed 29 March 2019
  17. 17.
    Stańczyk, J.: Max-plus algebra as a tool for the modelling and performance analysis of manufacturing systems. Oper. Res. Decis. 28(3), 77–97 (2018).  https://doi.org/10.5277/ord180307CrossRefGoogle Scholar
  18. 18.
    Yu, A.J.: Queueing Theory Applications in Manufacturing Systems. In: Bhat, U.N. (ed.) An Introduction to Queueing Theory, pp. 239–253. Springer (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Genetics and Animal BreedingWroclaw University of Environmental and Life SciencesWrocławPoland

Personalised recommendations