Advertisement

Poincaré–Verdier Duality

  • Laurenţiu G. Maxim
Chapter
Part of the Graduate Texts in Mathematics book series (GTM, volume 281)

Abstract

In this chapter we introduce the dualizing functor and dualizing complex, and show how these can be used to deduce Poincaré and Alexander duality statements for manifolds.

References

  1. 6.
    Banagl, M.: Topological Invariants of Stratified Spaces. Springer Monographs in Mathematics. Springer, Berlin (2007)Google Scholar
  2. 15.
    Borel, A.: Intersection cohomology. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2008)zbMATHGoogle Scholar
  3. 16.
    Borel, A., Moore, J.C.: Homology theory for locally compact spaces. Michigan Math. J. 7, 137–159 (1960)MathSciNetCrossRefGoogle Scholar
  4. 79.
    Godement, R.: Topologie algébrique et théorie des faisceaux. Hermann, Paris (1973) Troisième édition revue et corrigée, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Actualités Scientifiques et Industrielles, No. 1252Google Scholar
  5. 122.
    Kashiwara, M., Schapira, P.: Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292. Springer, Berlin (1994)Google Scholar
  6. 235.
    Verdier, J.-L.: Dualité dans la cohomologie des espaces localement compacts. In: Séminaire Bourbaki, vol. 9, Exp. No. 300, pp. 337–349. Soc. Math. France, Paris (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laurenţiu G. Maxim
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations