Intersection Homology: Definition, Properties

  • Laurenţiu G. Maxim
Part of the Graduate Texts in Mathematics book series (GTM, volume 281)


In this chapter, we introduce intersection homology from a chain-theoretic perspective, as originally developed by Goresky–MacPherson


  1. 6.
    Banagl, M.: Topological Invariants of Stratified Spaces. Springer Monographs in Mathematics. Springer, Berlin (2007)Google Scholar
  2. 15.
    Borel, A.: Intersection cohomology. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA (2008)zbMATHGoogle Scholar
  3. 16.
    Borel, A., Moore, J.C.: Homology theory for locally compact spaces. Michigan Math. J. 7, 137–159 (1960)MathSciNetCrossRefGoogle Scholar
  4. 75.
    Friedman, G.: Singular Intersection Homology.
  5. 80.
    Goresky, M.: Triangulation of stratified objects. Proc. Am. Math. Soc. 72(1), 193–200 (1978)MathSciNetCrossRefGoogle Scholar
  6. 81.
    Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)MathSciNetCrossRefGoogle Scholar
  7. 84.
    Goresky, M., MacPherson, R.: Morse theory and intersection homology theory. In: Analysis and Topology on Singular Spaces, II, III (Luminy, 1981). Astérisque, vol. 101, pp. 135–192. Soc. Math. France, Paris (1983)MathSciNetCrossRefGoogle Scholar
  8. 98.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  9. 127.
    King, H.C.: Topological invariance of intersection homology without sheaves. Topology Appl. 20(2), 149–160 (1985)MathSciNetCrossRefGoogle Scholar
  10. 128.
    Kirwan, F., Woolf, J.: An Introduction to Intersection Homology Theory, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2006)Google Scholar
  11. 151.
    MacPherson, R. Vilonen, K.: Elementary construction of perverse sheaves. Invent. Math. 84(2), 403–435 (1986)MathSciNetCrossRefGoogle Scholar
  12. 156.
    Mather, J.: Notes on topological stability. Bull. Amer. Math. Soc. (N.S.) 49(4), 475–506 (2012)MathSciNetCrossRefGoogle Scholar
  13. 170.
    McCrory, C.: Cone complexes and PL transversality. Trans. Am. Math. Soc. 207, 269–291 (1975)MathSciNetCrossRefGoogle Scholar
  14. 218.
    Siegel, P.H.: Witt spaces: a geometric cycle theory for KO-homology at odd primes. Amer. J. Math. 105(5), 1067–1105 (1983)MathSciNetCrossRefGoogle Scholar
  15. 232.
    Thom, R.: Ensembles et morphismes stratifiés. Bull. Amer. Math. Soc. 75, 240–284 (1969)MathSciNetCrossRefGoogle Scholar
  16. 233.
    Verdier, J.-L.: Stratifications de Whitney et théorème de Bertini-Sard. Invent. Math. 36, 295–312 (1976)MathSciNetCrossRefGoogle Scholar
  17. 242.
    Whitney, H.: Tangents to an analytic variety. Ann. Math. (2) 81, 496–549 (1965)MathSciNetCrossRefGoogle Scholar
  18. 243.
    Whitney, H.: Local properties of analytic varieties. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 205–244. Princeton University Press, Princeton, NJ (1965)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laurenţiu G. Maxim
    • 1
  1. 1.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations