Development of Alternative Shielding Functions for Detached-Eddy Simulations

  • Pascal WeihingEmail author
  • Johannes Letzgus
  • Thorsten Lutz
  • Ewald Krämer
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)


This paper presents recent developments in finding alternative shielding functions in the framework of Delayed Detached-Eddy Simulation (DDES). The weaknesses of the standard shielding function are elaborated for the turbulent flow over a flat plate and an axisymmetric adverse pressure gradient flow. In both cases a small filter width compared to the boundary layer height caused a degeneration of the shielding function and led to severe model stress depletion. To overcome the strong grid dependency of the standard shielding two alternative shielding functions are proposed. The first determines the boundary layer edge by integrating the vorticity in the wall-normal direction, while separated flow is identified based on a comparative analysis of the individual vorticity components. For the second switching function the boundary layer edge is estimated by evaluating a localized formulation of the Bernoulli equation. The shielding disintegrates under resolved turbulent content by a sensor that includes the \(\sigma \)-velocity gradient operator. The novel shieldings are verified for basic canonical test cases. Compared to DDES, a superior protection of attached boundary layers could be demonstrated.



This work was partly funded by DFG grant Untersuchung der dreidimensionalen dynamischen Strömungsablösung an Rotorblättern (investigation of three-dimensional dynamic stall on rotor blades). The authors acknowledge the High Performance Computing Center Stuttgart for providing computational resources.


  1. 1.
    Ashton, N., West, A., Mendonça, F.: Flow dynamics past a 30p30n three-element airfoil using improved Delayed Detached-Eddy Simulation. AIAA J. (2016)Google Scholar
  2. 2.
    Ashton, N.: Recalibrating Delayed Detached-Eddy Simulation to eliminate modelled-stress depletion. In: 23rd AIAA Computational Fluid Dynamics Conference, p. 4281 (2017)Google Scholar
  3. 3.
    Coder, J.G.: Development of a CFD-compatible transition model based on linear stability theory, The Pennsylvania State University, 2014Google Scholar
  4. 4.
    Deck, S.: Recent improvements in the zonal detached eddy simulation (zdes) formulation. Theor. Comput. Fluid Dyn. 1–28 (2012)Google Scholar
  5. 5.
    Driver, D.: Reynolds shear stress measurements in a separated boundary layer flow. In: 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference, p. 1787 (1991)Google Scholar
  6. 6.
    Heister, C.: A method for approximate prediction of laminar-turbulent transition on helicopter rotors. J. Am. Helicopter Soc. 63(3), 1–14 (2018)CrossRefGoogle Scholar
  7. 7.
    Kroll, N., Rossow, C.-C., Becker, K., Thiele, F.: The megaflow project. Aerosp. Sci. Technol. 4(4), 223–237 (2000)CrossRefGoogle Scholar
  8. 8.
    Letzgus, J., Gardner, A., Schwermer, T., Keßler, M., Krämer, E.: Numerical investigations of dynamic stall on a rotor with cyclic pitch control (2017)Google Scholar
  9. 9.
    Letzgus, J., Weihing, P., Keßler, M., Krämer, E.: Assessment of Delayed Detached-Eddy Simulation of dynamic stall on a rotor (2018)Google Scholar
  10. 10.
    Menter, F.: Stress-blended Eddy simulation (sbes)a new paradigm in hybrid rans-les modeling. In: Symposium on Hybrid RANS-LES Methods, pp. 27–37. Springer, Berlin (2016)Google Scholar
  11. 11.
    Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P., Strelets, M., Thiele, F., Travin, A.: Two non-zonal approaches to accelerate rans to les transition of free shear layers in des. In: Progress in Hybrid Rans-les Modelling, pp. 187–201. Springer, Berlin (2015)Google Scholar
  12. 12.
    Mockett, C., Haase, W., Schwamborn, D.: Go4hybrid: Grey Area Mitigation for Hybrid Rans-les Methods (2017)Google Scholar
  13. 13.
    Nasa turbulence modeling resource: Axisymmetric separated boundary layer. Accessed 25 Sep 2018
  14. 14.
    Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)CrossRefGoogle Scholar
  15. 15.
    Probst, A., Radespiel, R., Knopp, T.: Detached-eddy simulation of aerodynamic flows using a reynolds-stress background model and algebraic rans/les sensors. In: 20th AIAA Computational Fluid Dynamics Conference, p. 3206 (2011)Google Scholar
  16. 16.
    Probst, A., Wolf, C., Radespiel, R., Knopp, T., Schwamborn, D., Radespiel, R.: A comparison of detached-eddy simulation and reynolds-stress modeling applied to the flow over a backward-facing step and an airfoil at stall. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 920 (2010)Google Scholar
  17. 17.
    Schulte am Hülse, S.: Simulation transsonischen Buffets an Transportflugzeugen mittels hybrider RANS-/LES Verfahren. Ph.D. thesis, Institut für Aerodynamik und Gasdynamik der Universität Stuttgart (2014)Google Scholar
  18. 18.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid rans-les approach with delayed-des and wall-modelled les capabilities. Int. J. Heat Fluid Flow 29(6), 1638–1649 (2008)CrossRefGoogle Scholar
  19. 19.
    Spalart, P.R., Strelets, M.K.: Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329–349 (2000)CrossRefGoogle Scholar
  20. 20.
    Spalart, P.R., Deck, S., Shur, M., Squires, K., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(3), 181–195 (2006)CrossRefGoogle Scholar
  21. 21.
    Stock, H., Haase, W.: Determination of length scales in algebraic turbulence models for navier-stokes methods. AIAA J. 27(1), 5–14 (1989)CrossRefGoogle Scholar
  22. 22.
    Weihing, P., Letzgus, J., Bangga, G., Lutz, T., Krämer, E.: Hybrid rans/les capabilities of the flow solver flower-application to flow around wind turbines. In: The 6th Symposium on Hybrid RANS-LES Methods, Strassbourg (2016)Google Scholar
  23. 23.
    Wenzel, C., Selent, B., Kloker, M., Rist, U.: Dns of compressible turbulent boundary layers and assessment of data/scaling-law quality. J. Fluid Mech. 842, 428468 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wray, A.A.: Unpublished dns data (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Pascal Weihing
    • 1
    Email author
  • Johannes Letzgus
    • 1
  • Thorsten Lutz
    • 1
  • Ewald Krämer
    • 1
  1. 1.Institute of Aerodynamics and Gas DynamicsStuttgartGermany

Personalised recommendations