Advertisement

An Automated Zonal Detached Eddy Simulation Method for Transonic Buffet

  • Maximilian C. EhrleEmail author
  • Andreas Waldmann
  • Thorsten Lutz
  • Ewald Krämer
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)

Abstract

We present simulations with the Automated Zonal DES (AZDES) approach on the supercritical OAT15A airfoil and the Common Research Model (CRM) airplane configuration. Comparing URANS and AZDES simulations the shock prediction capabilities of URANS can be preserved. Turbulent structures in the wake are resolved in LES mode, which enables investigation of the propagation of turbulence in the wake. AZDES was shown to provide consistent results across different grids for the OAT15A airfoil. Validation using experimental data for the CRM showed good agreement in terms of wing pressure distributions.

Notes

Acknowledgements

The authors gratefully acknowledge DLR for providing the TAU source code. Furthermore we would like to thank the High Performance Computing Center Stuttgart (HLRS) for the support and the computational resources.

References

  1. 1.
    Crouch, J., Garbaruk, A., Magidov, D., Travin, A.: Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357–369 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Crouch. J.D., Garbaruk, A., Strelets, M.: Global instability analysis of unswept-and swept-wing transonic buffet onset. In: 2018 Fluid Dynamics Conference, p. 3229 (2018)Google Scholar
  3. 3.
    Dandois, J.: Experimental study of transonic buffet phenomenon on a 3D swept wing. Phys. Fluids 28(1), 116 (2016)CrossRefGoogle Scholar
  4. 4.
    Deck, S.: Zonal detached eddy simulation of the flow around a high-lift configuration. AIAA J. 43(11), 2372–2384 (2005)CrossRefGoogle Scholar
  5. 5.
    Garnier, E., Deck, S.: Large-eddy simulation of transonic buffet over a supercritical airfoil. In: Armenio, V., Fröhlich J., Geurts, B. (ed.) Direct and Large-Eddy Simulation VII, Springer, Berlin, Heidelberg, pp. 549–554 (2010)Google Scholar
  6. 6.
    Grossi, F., Braza, M., Hoarau, Y.: Prediction of transonic buffet by delayed detached-eddy simulation. AIAA J. 52(10), 2300–2312 (2014)CrossRefGoogle Scholar
  7. 7.
    Hartmann, A., Feldhusen, A., Schröder, W.: On the interaction of shock waves and sound waves in transonic buffet flow. Phys. Fluids 25(2), 025 (2013)CrossRefGoogle Scholar
  8. 8.
    Schulte am Hülse, S.A.: Simulation of transonic buffet on transport aircraft using hybrid rans/les methods. Ph.D. thesis, German language, University of Stuttgart, Dr. Hut Verlag, Munich (2016)Google Scholar
  9. 9.
    Illi, S., Fingskes, C., Lutz, T., Krämer, E.: Transonic tail buffet simulations for the common research model. (2013).  https://doi.org/10.2514/6.2013-2510. aIAA 2013-2510
  10. 10.
    Iovnovich, M., Raveh, D.E.: Numerical study of shock buffet on three-dimensional wings. AIAA J. 53(2), 449–463 (2014)CrossRefGoogle Scholar
  11. 11.
    Jacquin, L., Molton, P., Deck, S., Maury, B., Soulevant, D.: Experimental study of shock oscillation over a transonic supercritical profile. AIAA J. 47(9), 1985–1994 (2009)CrossRefGoogle Scholar
  12. 12.
    Lee, B.: Oscillatory shock motion caused by transonic shock boundary-layer interaction. AIAA J. 28(5), 942–944 (1990)CrossRefGoogle Scholar
  13. 13.
    Lee, B.H.K.: Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37, 147–196 (2001)CrossRefGoogle Scholar
  14. 14.
    Lutz, T., Gansel, P.P., Waldmann, A., Zimmermann, D.M., Schulte am Hülse S.A.: Time-resolved prediction and measurement of the wake past the crm at high reynolds number stall conditions. J. Aircr. 53(2), 501–514 (2016).  https://doi.org/10.2514/1.C033351
  15. 15.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-code, recent applications in research and industry. In: European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 (2006)Google Scholar
  16. 16.
    Sugioka, Y., Koike, S., Nakakita, K., Numata, D., Nonomura, T., Asai, K.: Experimental analysis of transonic buffet on a 3D swept wing using fast-response pressure-sensitive paint. Exp. Fluids 59(6), 108 (2018).  https://doi.org/10.1007/s00348-018-2565-5
  17. 17.
    Thiery, M., Coustols, E.: Numerical prediction of shock induced oscillations over a 2D airfoil: influence of turbulence modelling and test section walls. Int. J. Heat Fluid Flow 27, 661–670 (2006)CrossRefGoogle Scholar
  18. 18.
    Togiti, V., Eisfeld, B., Brodersen, O.: Turbulence model study for the flow around the nasa common research model. J. Aircr. 51(4), 1331–1343 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maximilian C. Ehrle
    • 1
    Email author
  • Andreas Waldmann
    • 1
  • Thorsten Lutz
    • 1
  • Ewald Krämer
    • 1
  1. 1.Institute of Aerodynamics and Gas DynamicsUniversität StuttgartStuttgartGermany

Personalised recommendations