Performance of a Modified DDES for the Near Stall Flow Past a NACA0015 Airfoil

  • Jian Liu
  • Wenqing Zhu
  • Zhixiang XiaoEmail author
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)


A modification of DDES with adaptive coefficient CDES (DDES-AC) is proposed to deal with the delay transition from RANS to LES in the stall flows over a NACA0015 airfoil. The coefficient CDES is adaptive with the flow patterns, quasi-2D shear layer or 3D full developed separation, which helps to reduce the eddy viscosity in the separated shear layer. The performance of DDES-AC is validated by computing the flows over a NACA005 airfoil with mild trailing edge separation and during dynamic stall. It is found that the “grey area” in the original DDES is exacerbated in the simulation of dynamic stall. The DDES-AC is effective in accelerating the transition from RANS to LES and alleviating the “grey area” to some extent.


DDES Adaptive coefficient Grey area Mild separation Dynamic stall 



This work was supported by the National Natural Science Foundation of China (Grant No. 11772174 and No. 91852113).


  1. 1.
    Liu, X., Lu, C., Liang, S., Godbole, A., Chen, Y.: Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades. Appl. Energy 185, 1109–1119 (2017)CrossRefGoogle Scholar
  2. 2.
    Hashem, I., Mohamed, M.H.: Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142, 531–545 (2018)CrossRefGoogle Scholar
  3. 3.
    Brian, H., Ger, K., Andrew, C.: Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Comput. Fluids 149, 12–30 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carr, L.W., Chandrasekhara, M.S.: Compressibility effects on dynamic stall. Prog. Aerosp. Sci. 32, 523–573 (1996)CrossRefGoogle Scholar
  5. 5.
    Wang, L., Fu, S.: Detached-eddy simulation of flow past a pitching NACA 0015 airfoil with pulsed actuation. Aerosp. Sci. Technol. 69, 123–135 (2017)CrossRefGoogle Scholar
  6. 6.
    Durrani, N., Qin, N.: Behavior of detached-eddy simulations for mild airfoil trailing-edge separation. J. Aircr. 48(1), 193–202 (2011)CrossRefGoogle Scholar
  7. 7.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: An enhanced version of DES with rapid transition from RANS to LES in separated flows. Flow Turbul. Combust. 95, 709–737 (2015)CrossRefGoogle Scholar
  8. 8.
    Guseva, E.K., Garbaruk, A.V., Strelets, M.K.: Assessment of delayed DES and improved delayed DES combined with a shear-layer-adapted subgrid length-scale in separated flows. Flow Turbul. Combust. 98, 481–502 (2017)CrossRefGoogle Scholar
  9. 9.
    Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P.R., Strelets, M., Thiele, F., Travin, A.: Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES. In: Progress in Hybrid RANS-LES Modelling. Springer International Publishing, pp. 187–201 (2015)Google Scholar
  10. 10.
    Menter, F.: Stress-blended eddy simulation (SBES)-a new paradigm in hybrid RANS-LES modeling. In: Hoarau, Y., et al. (eds.) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 137, pp. 27–37 (2018)Google Scholar
  11. 11.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183–200 (1999)CrossRefGoogle Scholar
  12. 12.
    Gritskevich, M.S., Garbaruk, A.V., Schütze, J., Menter, F.R.: Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow Turbul. Combust. 88, 431–449 (2012)CrossRefGoogle Scholar
  13. 13.
    Liu, J., Zhu, W.Q., Xiao, Z.X., et al.: DDES with adaptive coefficient for stalled flows past a wind turbine airfoil. Energy 161, 846–858 (2018)CrossRefGoogle Scholar
  14. 14.
    Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16, 99–137 (1984)CrossRefGoogle Scholar
  15. 15.
    Lilly, D.K.: The Representation of Small Scale Turbulence in Numerical Simulation Experiments. Lecture Notes on Turbulence. World Scientific, pp. 171–218 (1987)Google Scholar
  16. 16.
    Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds number. J. Fluid Mech. 41, 453–480 (1970)CrossRefGoogle Scholar
  17. 17.
    Simon, F., Deck, S., Guillen, P.: Reynolds-averaged Navier-Stokes/large-Eddy simulations of supersonic base flow. AIAA J. 44(11), 2578–2590 (2006)CrossRefGoogle Scholar
  18. 18.
    Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids, 085106-1-13 (2011)Google Scholar
  19. 19.
    Cui, W.Y., Liu, J., Sun, Y.H., Li, Q.B., Xiao, Z.X.: Airbrake controls of pitching moment and pressure fluctuation for an oblique tail fighter model. Aerosp. Sci. Technol. 81, 294–305 (2018)CrossRefGoogle Scholar
  20. 20.
    Piziali, R.A.: 2D and 3D oscillating wing aerodynamics for a range of angles of attack including stall. NASA TM 4632 (1994)Google Scholar
  21. 21.
    Szydlowski, J., Costes, M.: Simulation of flow around a static and oscillating in pitch NACA0015 airfoil using URANS and DES. ASME. ASME Proc. 2, 891–908 (2004)Google Scholar
  22. 22.
    Liu, Z., Yang, Y.J., Zhou, W.J., Gong, A.L.: Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method. Acta Aeronaut. Astronaut. Sinica 35(2), 372–380 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  2. 2.China Aerodynamics Research and Development CenterMianyangChina

Personalised recommendations