Advertisement

Advanced Numerical Strategy for the Prediction of Unsteady Flow Aerodynamics Around Complex Geometries

  • Pierre-Élie WeissEmail author
  • Sébastien Deck
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)

Abstract

The present work focuses on an advanced numerical methodology named ZIBC standing for Zonal Immersed Boundary Conditions and enabling to account for realistic configurations at high Reynolds numbers. This coupling between a modelling method with a high level of maturity regarding the prediction of turbulent separated flows namely the Zonal Detached Eddy Simulation (ZDES) and Immersed Boundary Conditions (IBC) is detailed. Such a numerical strategy is applied to complex configurations dealing with external and internal aerodynamics namely a full space launcher configuration in the transonic regime and a supersonic air inlet in the subcritical regime before the buzz phenomenon occurs.

Keywords

ZDES ZIBC Immersed boundary conditions Space launcher Air inlet Moving body Compressible flow Shock waves 

References

  1. 1.
    Alauzet, F., Loseille, A., Olivier, G.: Time-accurate multi-scale anisotropic mesh adaptation for unsteady flows in CFD. J. Comput. Phys. 373, 28–63 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benoit, C., Péron, S.: Automatic structured mesh generation around two-dimensional bodies defined by polylines or polyc1 curves. Comput. Fluids 61, 2849–2860 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chalot F., Levasseur V., Mallet M., Petit G., Reau N.: LES and DES simulations for aircraft design. In: 2007 45th AIAA aerospace sciences meeting and exhibit, AIAA paper, p. 0723 (2007)Google Scholar
  4. 4.
    Deck, S.: Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26(6), 523–550 (2012)CrossRefGoogle Scholar
  5. 5.
    Deck, S., Weiss, P.-E., Renard, N.: A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers. J. Comput. Phys. 363, 231–255 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gand, F.: Zonal Detached Eddy Simulation of a civil aircraft with a deflected spoiler. AIAA J. 51, 697–706 (2012)CrossRefGoogle Scholar
  7. 7.
    Geurts, E.G.M.: Unsteady subscale force measurements within a launch vehicle base buffeting environment. Wind tunnel test of buffeting reduction devices, Technical Report NLR-CR-2010-396/test 7003, pp. 1–67 (2010)Google Scholar
  8. 8.
    Grenson, P., Beneddine S.: Analysis of shock oscillations of an external compression supersonic inlet through unsteady numerical simulations. In: 2018 Applied Aerodynamics Conference, AIAA AVIATION Forum, p. 3011 (2018)Google Scholar
  9. 9.
    Hannemann, K., Pallegoix, J.-F., Lambaré, H., Maseland, J.J., Frey, M., Deck, S., Schrijer, F.F.J., Schwane, R.: Launch vehicle base buffeting: recent experimental and numerical investigations. In: Proceedings of the 7th European Symposium on Aerothermodynamics for Space Vehicles. ESA Communications, ESTEC, Noordwijk, The Netherlands (2011)Google Scholar
  10. 10.
    Manueco L., Weiss P.-E., Deck, S.: Towards the prediction of fluctuating wall quantities using immersed boundary conditions. In: Applied Aerodynamics Conference, AIAA AVIATION Forum, Dallas (2019)Google Scholar
  11. 11.
    Mochel, L., Weiss, P.-E., Deck, S.: Zonal immersed boundary conditions: application to a high reynolds number afterbody flow. AIAA J. 52(12), 2782–2794 (2014)CrossRefGoogle Scholar
  12. 12.
    Lüdeke, H., Mulot, J., Hannemann, K.: Launch vehicle base flow analysis using improved delayed Detached-Eddy simulation. AIAA J. 53, 2454–2471 (2015)CrossRefGoogle Scholar
  13. 13.
    Roux, A., Reichstadt, S., Bertier, N., Gicquel, L., Vuillot, F., Poinsot, T.: Comparison of numerical methods and combustion models for LES of a ramjet. Combust. Aerosp. Propuls. 337(6–7), 313–572 (2009)Google Scholar
  14. 14.
    Sagaut, P., Deck, S.: Large Eddy simulation for aerodynamics: status and perspectives. Philos. Trans. R. Soc. A 367, 2849–2860 (2009)CrossRefGoogle Scholar
  15. 15.
    Sainte-Rose, B., Bertier, N., Deck, S., Dupoirieux, F.: Numerical simulations and physical analysis of an overexpanded reactive gas flow in a planar nozzle. Combust. Flame 159, 2859–2871 (2012)CrossRefGoogle Scholar
  16. 16.
    Schwane, R.: Numerical prediction and experimental validation of unsteady loads on ARIANE 5 and VEGA. J. Spacecr. Rocket. 52, 54–62 (2015)CrossRefGoogle Scholar
  17. 17.
    Spalart, P.R.: Strategies for turbulence modelling and simulation. Int. J. Heat Fluid Flow 21, 252–263 (2000)CrossRefGoogle Scholar
  18. 18.
    Weiss, P.-E., Deck, S.: ZDES of the flow dynamics on an Ariane 5-type afterbody with and without struts. In: 6th European Conference for Aerospace Sciences. Flight Physics, Launcher Aerodynamics (2015)Google Scholar
  19. 19.
    Weiss, P.-E., Deck, S.: On the coupling of a zonal body-fitted/immersed boundary method with ZDES: application to the interactions on a realistic space launcher afterbody flow. Comput. Fluids, 176, 15 November 2018, 338–352 (2018).  https://doi.org/10.1016/j.compfluid.2017.06.015
  20. 20.
    Weiss P.-E., Deck S.: ZDES-based methodologies for unsteady compressible flows around complex geometries. In: 1st HiFiLeD Symposium on Industrial LES & DNS (HiFiLeD), Brussels, Belgium, 14–16 Nov 2018Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.DAAA, ONERA, Université Paris SaclayMeudonFrance

Personalised recommendations