Advertisement

Adaptive Mesh Refinement with an Automatic Hybrid RANS/LES Strategy and Overset Grids

  • Alexandre LimareEmail author
  • Houman Borouchaki
  • Pierre Brenner
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)

Abstract

A simulation strategy combining an octree-AMR and an HRL turbulence model with overset grids is investigated in FLUSEPA™, the Finite-Volume solver developed by ArianeGroup. The turbulence model used is a \(k- \varepsilon \) with a Delayed Detached Eddy Simulation [14] treatment for the destruction term of k. First, we study the influence of the refinement criteria on the pressure fluctuations in the recirculation area of a cylindrical backward facing step. Using an initially coarse grid, we compare the results with those from a fixed fine grid calculation. Then, the methodology is applied to the numerical simulation of the buffeting of an Ariane 5 model.

Keywords

AMR Mesh adaptation criteria Hybrid RANS-LES Finite volume k-Exact Unstructured overset grids 

References

  1. 1.
    Berger, M.: Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D. thesis, Stanford University, CA (1982)Google Scholar
  2. 2.
    Brenner, P.: Three dimensional aerodynamics with moving bodies applied to solid propellant. In: 27th Joint Propulsion Conference—AIAA, 2304 (1991)Google Scholar
  3. 3.
    Brenner, P.: Unsteady flows about bodies in relative motion. In: First AFOSR Conference on Dynamic Motion CFD (1996)Google Scholar
  4. 4.
    Chauvet, N., Deck, S., Jacquin, L.: Zonal detached eddy simulation of a controlled propulsive jet. AIAA J. 45(10), 2458–2473 (2007)CrossRefGoogle Scholar
  5. 5.
    Deck, S.: Recent improvements in the zonal detached eddy simulation (ZDES) formulation. Theoretical and Computational Fluid Dynamics, pp. 1–28 (2012)Google Scholar
  6. 6.
    Deprés, D., Reijasse, P., Dussauge, J.P.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42(12), 2541–2550 (2004)CrossRefGoogle Scholar
  7. 7.
    Kleb, W.L., Batina, J.T., Williams, M.H.: Temporal adaptive Euler/Navier-Stokes algorithm involving unstructured dynamic meshes. AIAA J. 30(8), 1980–1985 (1992)CrossRefGoogle Scholar
  8. 8.
    Limare, A., Brenner, P., Borouchaki, H.: An adaptive remeshing strategy for unsteady aerodynamics applications. In: 46th AIAA Fluid Dynamics Conference, p. 3180 (2016)Google Scholar
  9. 9.
    Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. part 1 : Theory and model description. Flow Turbul. Combust. 138:85–113 (2010)Google Scholar
  10. 10.
    Meliga, P., Reijasse, P.: Unsteady transonic flow behind an axisymmetric afterbody equipped with two boosters. In: 25th AIAA Applied Aerodynamics Conference, p. 4564 (2007)Google Scholar
  11. 11.
    Park, M.A., Loseille, A., Krakos, J., Michal, T.R., Alonso, J.J.: Unstructured grid adaptation: status, potential impacts, and recommended investments towards CFD 2030. In: 46th AIAA Fluid Dynamics Conference, p. 3323 (2016)Google Scholar
  12. 12.
    Pont, G.: Self-adaptive turbulence models for unsteady compressible flows. Ph.D. thesis, DynFluid, Arts et Metiers ParisTech (2015)Google Scholar
  13. 13.
    Pont, G., Puech, D., Brenner, P.: Hybrid RANS/LES simulation of a space launcher using a high order finite volume scheme and grid intersections technique. pp. 305–317 (2015)Google Scholar
  14. 14.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)CrossRefGoogle Scholar
  15. 15.
    Weiss, P.-E.: Simulation numérique et analyse physique d’un écoulement d’arrière-corps axisymétrique et application au contrôle des charges latérales. Ph.D. thesis, Paris 6 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alexandre Limare
    • 1
    Email author
  • Houman Borouchaki
    • 2
  • Pierre Brenner
    • 3
  1. 1.Laboratoire d’Hydrodynamique LadHyX, CNRS Ecole PolytechniquePalaiseau CedexFrance
  2. 2.Gamma3, University of Technology of TroyesTroyes CedexFrance
  3. 3.ArianeGroupLes Mureaux CedexFrance

Personalised recommendations