Reynolds-Constrained Large-Eddy Simulation: Sensitivity to Constraint and SGS Models

  • Rui WangEmail author
  • Zuoli XiaoEmail author
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 143)


Reynolds-constrained large-eddy simulation (CLES) method proves to have advantage over traditional large-eddy simulation (LES) approach in both attached and separated turbulent flows, but its sensitivity to the constraint model and base subgrid-scale (SGS) model remains unclear. Here, a comparative study is carried out to clarify the level of dependence of CLES method upon the constraint and base models. Specifically, the Baldwin-Lomax (BL) model, Spalart-Allmaras (SA) model, and Menter’s Shear Stress Transport (SST) model are used for the Reynolds constraint models, while Smagorinsky model (SM), Wall-adapting local eddy-viscosity (WALE) model, and Dynamic Smagorinsky model (DSM) for SGS models. The compressible flow past a circular cylinder is simulated at Reynolds number \(2\times {10^5}\) and Mach number 0.75, respectively. It is manifested that the CLES method is sensitive to the constraint models, but less sensitive to the base SGS models, which provides a guideline for further optimization of the CLES method.


Large-Eddy Simulation CLES Sensitivity 



We are grateful to Xinliang Li for providing the in-house code OpenCFD-EC, which is the footstone for the evaluation of CLES method. Numerical simulations were carried out on the Tianhe-2 supercomputing facility at National Supercomputer Center in Guangzhou, China.


  1. 1.
    Baldwin, B., Lomax, H.: Thin-layer approximation and algebraic model for separated turbulentflows. In: 16th Aerospace Sciences Meeting, p. 257 (1978)Google Scholar
  2. 2.
    Chen, L., Xiao, Z., Shi, Y., Chen, S.: Constrained large-eddy simulation of supersonic turbulent boundary layer over a compression ramp. J. Turbul. 18(8), 781–808 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, S., Xia, Z., Pei, S., Wang, J., Yang, Y., Xiao, Z., Shi, Y.: Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 703, 1–28 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large reynolds numbers. J. Fluid Mech. 41(2), 453–480 (1970)CrossRefGoogle Scholar
  5. 5.
    Edwards, J.R., Chandra, S.: Comparison of eddy viscosity-transport turbulence models for three-dimensional, shock-separated flowfields. AIAA J. 34(4), 756–763 (1996)CrossRefGoogle Scholar
  6. 6.
    Fröhlich, J., Von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44(5), 349–377 (2008)CrossRefGoogle Scholar
  7. 7.
    Georgiadis, N.J., Rizzetta, D.P., Fureby, C.: Large-eddy simulation: current capabilities, recommended practices, and future research. AIAA J. 48(8), 1772–1784 (2010)CrossRefGoogle Scholar
  8. 8.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3(7), 1760–1765 (1991)CrossRefGoogle Scholar
  9. 9.
    Hong, R., Xia, Z., Shi, Y., Xiao, Z., Chen, S.: Constrained large-eddy simulation of compressible flow past a circular cylinder. Commun. Comput. Phys. 15(2), 388–421 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jiang, Z., Xiao, Z., Shi, Y., Chen, S.: Constrained large-eddy simulation of wall-bounded compressible turbulent flows. Phys. Fluids 25(10), 106,102 (2013)Google Scholar
  11. 11.
    Liou, M.S., Steffen Jr., C.J.: A new flux splitting scheme. J. Comput. Phys. 107(1), 23–39 (1993)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Macha, J.M.: Drag of circular cylinders at transonic mach numbers. J. Aircr. 14(6), 605–607 (1977)CrossRefGoogle Scholar
  13. 13.
    Martin, M.P., Piomelli, U., Candler, G.V.: Subgrid-scale models for compressible large-eddy simulations. Theor. Comput. Fluid Dyn. 13(5), 361–376 (2000)zbMATHGoogle Scholar
  14. 14.
    Mellen, C.P., Fr-ograve, J., hlich, Rodi, W.: Lessons from LESFOIL project on large-eddy simulation of flow around an airfoil. AIAA J. 41(4), 573–581 (2003)Google Scholar
  15. 15.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  16. 16.
    Murthy, V., Rose, W.: Detailed measurements on a circular cylinder in cross flow. AIAA J. 16(6), 549–550 (1978)CrossRefGoogle Scholar
  17. 17.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul. Combust. 62(3), 183–200 (1999)CrossRefGoogle Scholar
  18. 18.
    Nikitin, N., Nicoud, F., Wasistho, B., Squires, K., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12(7), 1629–1632 (2000)CrossRefGoogle Scholar
  19. 19.
    Rodriguez, O.: The circular cylinder in subsonic and transonic flow. AIAA J. 22(12), 1713–1718 (1984)CrossRefGoogle Scholar
  20. 20.
    Smagorinsky, J.: General circulation experiments with the primitive equations: I. the basic experiment. Mon. Weather. Rev. 91(3), 99–164 (1963)Google Scholar
  21. 21.
    Spalart, P.R.: Comments on the feasibility of les for wings, and on a hybrid rans/les approach. In: Proceedings of First AFOSR International Conference on DNS/LES. Greyden Press (1997)Google Scholar
  22. 22.
    Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  23. 23.
    Strelets, M.: Detached eddy simulation of massively separated flows. In: 39th Aerospace Sciences Meeting and Exhibit, p. 879 (2001)Google Scholar
  24. 24.
    Xu, C.Y., Chen, L.W., Lu, X.Y.: Large-eddy simulation of the compressible flow past a wavy cylinder. J. Fluid Mech. 665, 238–273 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Peking UniversityBeijingChina

Personalised recommendations