Advertisement

Polynomial Chaos Approach to Describe the Propagation of Uncertainties Through Gas Networks

  • Stephan GersterEmail author
  • Michael Herty
  • Michael Chertkov
  • Marc Vuffray
  • Anatoly Zlotnik
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 30)

Abstract

The ability of gas-fired power plants to ramp quickly is used to balance fluctuations in the power grid caused by renewable energy sources, which in turn leads to time-varying gas consumption and fluctuations in the gas network. Since gas system operators assume nearly constant gas consumption, there is a need to assess the risk of these stochastic fluctuations, which occur on shorter time scales than the planning horizon. We present a mathematical formulation for these stochastic fluctuations as a generalization of isothermal Euler equations. Furthermore, we discuss control policies to damp fluctuations in the network.

Keywords

Gas networks Hyperbolic partial differential equations Uncertainty quantification Stochastic Galerkin method Polynomial chaos expansion 

Notes

Acknowledgements

This work is supported by DFG HE5386/14,15, BMBF 05M18PAA, DFG-GRK 2326, Student Guest Program of Los Alamos National Laboratory.

References

  1. 1.
    Abgrall, R., Congedo, P.M., Geraci, G., Iaccarino, G.: An adaptive multiresolution semi-intrusive scheme for UQ in compressible fluid problems. Int. J. Numer. Methods Fluids 78, 595–637 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Banda, M.K., Herty, M., Klar, A.: Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterogen. Media 1, 295–314 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9, 601–623 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 48(2), 385–392 (1947)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chertkov, M., Korotkevich, A.: Adiabatic approach for natural gas pipeline computations. In: IEEE 56th Annual Conference on Decision and Control, pp. 5634–5639. IEEE, Piscataway (2017)Google Scholar
  6. 6.
    Chertkov, M., Backhaus, S., Lebedev, V.: Cascading of fluctuations in interdependent energy infrastructures: gas-grid coupling. Appl. Energy 160, 541–551 (2015)CrossRefGoogle Scholar
  7. 7.
    Chertkov, M., Fisher, M., Backhaus, S., Bent, R., Misra, S.: Pressure fluctuations in natural gas networks caused by gas-electric coupling. In: 48th Hawaii International Conference on System Sciences, pp. 2738–2747. IEEE, Piscataway (2015)Google Scholar
  8. 8.
    Colombo, R.M., Garavello, M.: A well-posed Riemann problem for the p-system at a junction. Netw. Heterogen. Media 1, 495–511 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Colombo, R.M., Garavello, M.: Euler system for compressible fluids at a junction. J. Hyperbolic Differ. Equ. 5, 547–568 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Després, B., Poëtte, G., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228, 2443–2467 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gerster, S., Herty, M., Sikstel, A.: Hyperbolic stochastic Galerkin formulation for the p-system. J. Comput. Phys. 395, 186–204 (2019)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)CrossRefGoogle Scholar
  13. 13.
    Gugat, M., Herty, M.: Existence of classical solutions and feedback stabilization for the flow in gas networks. ESAIM Control Optim. Calc. Var. 17, 28–51 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Moniz, E., Meggs, A., et al. The Future of Natural Gas. An Interdisciplinary MIT study. MIT Energy Initiative, Cambridge (2011)Google Scholar
  15. 15.
    Osiadacz, A.: Nonlinear programming applied to the optimum control of a gas compressor station. Int. J. Numer. Methods Eng. 15, 1287–1301 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pettersson, P., Iaccarino, G., Nordström, J.: A stochastic Galerkin method for the Euler equations with Roe variable transformation. J. Comput. Phys. 257, 481–500 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G.: Control policies for operational coordination of electric power and natural gas transmission systems. In: 2016 American Control Conference (ACC), pp. 7478–7483. IEEE, Piscataway (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephan Gerster
    • 1
    Email author
  • Michael Herty
    • 1
  • Michael Chertkov
    • 2
  • Marc Vuffray
    • 2
  • Anatoly Zlotnik
    • 2
  1. 1.IGPMRWTH Aachen UniversityAachenGermany
  2. 2.CNLSLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations