Polynomial Chaos Approach to Describe the Propagation of Uncertainties Through Gas Networks
Abstract
The ability of gas-fired power plants to ramp quickly is used to balance fluctuations in the power grid caused by renewable energy sources, which in turn leads to time-varying gas consumption and fluctuations in the gas network. Since gas system operators assume nearly constant gas consumption, there is a need to assess the risk of these stochastic fluctuations, which occur on shorter time scales than the planning horizon. We present a mathematical formulation for these stochastic fluctuations as a generalization of isothermal Euler equations. Furthermore, we discuss control policies to damp fluctuations in the network.
Keywords
Gas networks Hyperbolic partial differential equations Uncertainty quantification Stochastic Galerkin method Polynomial chaos expansionNotes
Acknowledgements
This work is supported by DFG HE5386/14,15, BMBF 05M18PAA, DFG-GRK 2326, Student Guest Program of Los Alamos National Laboratory.
References
- 1.Abgrall, R., Congedo, P.M., Geraci, G., Iaccarino, G.: An adaptive multiresolution semi-intrusive scheme for UQ in compressible fluid problems. Int. J. Numer. Methods Fluids 78, 595–637 (2015)MathSciNetCrossRefGoogle Scholar
- 2.Banda, M.K., Herty, M., Klar, A.: Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterogen. Media 1, 295–314 (2006)MathSciNetCrossRefGoogle Scholar
- 3.Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9, 601–623 (2011)MathSciNetCrossRefGoogle Scholar
- 4.Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 48(2), 385–392 (1947)MathSciNetCrossRefGoogle Scholar
- 5.Chertkov, M., Korotkevich, A.: Adiabatic approach for natural gas pipeline computations. In: IEEE 56th Annual Conference on Decision and Control, pp. 5634–5639. IEEE, Piscataway (2017)Google Scholar
- 6.Chertkov, M., Backhaus, S., Lebedev, V.: Cascading of fluctuations in interdependent energy infrastructures: gas-grid coupling. Appl. Energy 160, 541–551 (2015)CrossRefGoogle Scholar
- 7.Chertkov, M., Fisher, M., Backhaus, S., Bent, R., Misra, S.: Pressure fluctuations in natural gas networks caused by gas-electric coupling. In: 48th Hawaii International Conference on System Sciences, pp. 2738–2747. IEEE, Piscataway (2015)Google Scholar
- 8.Colombo, R.M., Garavello, M.: A well-posed Riemann problem for the p-system at a junction. Netw. Heterogen. Media 1, 495–511 (2006)MathSciNetCrossRefGoogle Scholar
- 9.Colombo, R.M., Garavello, M.: Euler system for compressible fluids at a junction. J. Hyperbolic Differ. Equ. 5, 547–568 (2008)MathSciNetCrossRefGoogle Scholar
- 10.Després, B., Poëtte, G., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228, 2443–2467 (2009)MathSciNetCrossRefGoogle Scholar
- 11.Gerster, S., Herty, M., Sikstel, A.: Hyperbolic stochastic Galerkin formulation for the p-system. J. Comput. Phys. 395, 186–204 (2019)MathSciNetCrossRefGoogle Scholar
- 12.Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)CrossRefGoogle Scholar
- 13.Gugat, M., Herty, M.: Existence of classical solutions and feedback stabilization for the flow in gas networks. ESAIM Control Optim. Calc. Var. 17, 28–51 (2011)MathSciNetCrossRefGoogle Scholar
- 14.Moniz, E., Meggs, A., et al. The Future of Natural Gas. An Interdisciplinary MIT study. MIT Energy Initiative, Cambridge (2011)Google Scholar
- 15.Osiadacz, A.: Nonlinear programming applied to the optimum control of a gas compressor station. Int. J. Numer. Methods Eng. 15, 1287–1301 (1980)MathSciNetCrossRefGoogle Scholar
- 16.Pettersson, P., Iaccarino, G., Nordström, J.: A stochastic Galerkin method for the Euler equations with Roe variable transformation. J. Comput. Phys. 257, 481–500 (2014)MathSciNetCrossRefGoogle Scholar
- 17.Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)MathSciNetCrossRefGoogle Scholar
- 18.Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)MathSciNetCrossRefGoogle Scholar
- 19.Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G.: Control policies for operational coordination of electric power and natural gas transmission systems. In: 2016 American Control Conference (ACC), pp. 7478–7483. IEEE, Piscataway (2016)Google Scholar