Time-Reversal Methods in Acousto-Elastodynamics

  • Franck Assous
  • Moshe LinEmail author
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 30)


The aim of the article is to solve an inverse problem in order to determine the presence and some properties of an elastic “inclusion” (an unknown object, characterized by elastic properties discriminant from the surrounding medium) from partial observations of acoustic waves, scattered by the inclusion. The method will require developing techniques based on Time Reversal methods. A finite element method based on acousto-elastodynamics equations will be derived and used to solve the inverse problem. Our approach will be applied to configurations modeling breast cancer detection, using simulated ultrasound waves.


  1. 1.
    Assous, F., Kray, M., Nataf, F.: Time-reversed absorbing conditions in the partial aperture case. Wave Motion 49, 617–631 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Assous, F., Kray, M., Nataf, F., Turkel, E.: Time reversed absorbing condition: application to inverse problems. Inverse Prob. 27(6), 065003 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bardos, C., Fink, M.: Mathematical foundations of the time reversal mirror. Asymptot. Anal. 29, 157–182 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Blomgren, P., Papanicolaou, G., Zhao, H.: Super-resolution in time-reversal acoustics. J. Acoust. Soc. Am. 111, 230–248 (2002)CrossRefGoogle Scholar
  5. 5.
    Claerbout, J.F.: Imaging the Earth’s Interior. Blackwell, Oxford (1985)Google Scholar
  6. 6.
    Clayton, R., Engquist, B.: Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am. 67, 1529–1540 (1977)Google Scholar
  7. 7.
    Clouet, J.-F., Fouque, J.-P.: A time-reversal method for an acoustical pulse propagating in randomly layered media. Wave Motion 25, 361–368 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fink, M., Wu, F., Cassereau, D., Mallart, R.: Imaging through inhomogeneous media using time reversal mirrors. Ultrason. Imaging 13–2, 179–199 (1991)Google Scholar
  9. 9.
    Givoli, D., Turkel, E.: Time reversal with partial information for wave refocusing and scatterer identification. Comput. Methods Appl. Mech. Eng. 213–216, 223–242 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Halpern, L.: Etudes des conditions aux limites absorbantes pour des schémas numériques relatifs a des équations hyperboliques linéaires. Ph.D Thesis, Paris VI University (1980)Google Scholar
  11. 11.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Kosmas, P., Rappaport, C.M.: Time reversal with the fdtd method for microwave breast cancer detection. IEEE Trans. Microwave Theory Tech. 53 (7), 2317–2323 (2005)CrossRefGoogle Scholar
  13. 13.
    Larmat, C., Montagner, J.-P., Fink, M., Capdeville, Y., Tourin, A., Clévédé, E.: Time-reversal imaging of seismic sources and application to the great sumatra earthquake. Geophys. Res. Lett. 33, 1–4 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ariel UniversityArielIsrael

Personalised recommendations