Miscellaneous Spine Procedures: Nucleoplasty, Intradiscal Electrothermal Therapy (IDET), and Cryotherapy

  • Vwaire OrhurhuEmail author
  • Christopher Aiudi
  • Ivan Urits
  • Jatinder S. Gill


Approximately 40% of low back pain is caused by intervertebral disc pathology. While surgery may be an effective treatment for patient refractory to conservative management, it may not reliably provide symptomatic relief and may be associated with significant morbidity. Minimally invasive procedures such as nucleoplasty, neuronal cryotherapy, and percutaneous intradiscal thermocoagulation have been demonstrated to be efficacious in the treatment of low back pain secondary to intervertebral disc pathology and offer a viable therapeutic modality prior to undergoing surgery. Nucleoplasty involves the use of a high energy source to mechanically remove the soft tissue that is attributed to the source of pathology causing pain. Cryotherapy employs cold temperatures to create an anesthetic block by inducing neurolysis of the nervous tissue innervating the painful area. Percutaneous intradiscal thermocoagulation provides pain relief by employing a heated probe to produce structurally advantageous changes to the intervertebral disc and concomitantly ablate nociceptive nerves of the pathological disc. Together, these minimally invasive options to treating low back pain that is secondary to pathology of the intervertebral disc may offer improved pain in function to otherwise surgical patients.


Discogenic pain Plasma disc decompression and nucleoplasty Percutaneous intradiscal thermocoagulation IDET Cryotherapy Disc nucleoplasty Discography Cryoneurolysis 


  1. 1.
    Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine (Phila Pa 1976). 1995;20:1878–83.Google Scholar
  2. 2.
    Parisien RC, Ball PA. William Jason Mixter (1880–1958). Ushering in the “dynasty of the disc.”. Spine (Phila Pa 1976). 1998;23:2363–6.Google Scholar
  3. 3.
    Kallewaard JW, Terheggen MAMB, Groen GJ, Sluijter ME, Derby R, Kapural L, et al. 15. Discogenic low back pain. Pain Pract. 2010;10:560–79.PubMedGoogle Scholar
  4. 4.
    Saal JA, Saal JS. Nonoperative treatment of herniated lumbar intervertebral disc with radiculopathy. An outcome study. Spine (Phila Pa 1976). 1989;14:431–7.Google Scholar
  5. 5.
    Weber H. Lumbar disc herniation. A controlled, prospective study with ten years of observation. Spine (Phila Pa 1976). 1983;8:131–40.Google Scholar
  6. 6.
    Weinstein JN, Lurie JD, Tosteson TD, Tosteson ANA, Blood EA, Abdu WA, et al. Surgical versus nonoperative treatment for lumbar disc herniation: four-year results for the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976). 2008;33:2789–800.Google Scholar
  7. 7.
    Hirsch C, Ingelmark BE, Miller M. The anatomical basis for low back pain. Studies on the presence of sensory nerve endings in ligamentous, capsular and intervertebral disc structures in the human lumbar spine. Acta Orthop Scand. 1963;33:1–17.PubMedGoogle Scholar
  8. 8.
    Chen YC, Lee S, Chen D. Intradiscal pressure study of percutaneous disc decompression with nucleoplasty in human cadavers. Spine (Phila Pa 1976). 2003;28:661–5.Google Scholar
  9. 9.
    Jackson RP, Cain JE, Jacobs RR, Cooper BR, McManus GE. The neuroradiographic diagnosis of lumbar herniated nucleus pulposus: II. A comparison of computed tomography (CT), myelography, CT-myelography, and magnetic resonance imaging. Spine (Phila Pa 1976). 1989;14:1362–7.Google Scholar
  10. 10.
    Weiner BK, Patel R. The accuracy of MRI in the detection of lumbar disc containment. J Orthop Surg Res. 2008;3:46.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Pomerantz SR, Hirsch JA. Intradiscal therapies for discogenic pain. Semin Musculoskelet Radiol. 2006;10:125–35.PubMedGoogle Scholar
  12. 12.
    O’Neill CW, Liu JJ, Leibenberg E, Hu SS, Deviren V, Tay BK-B, et al. Percutaneous plasma decompression alters cytokine expression in injured porcine intervertebral discs. Spine J. 4:88–98.PubMedGoogle Scholar
  13. 13.
    Onik G, Helms C, Ginsburg L, Hoaglund F, Morris J. Percutaneous lumbar diskectomy using a new aspiration probe. Am J Roentgenol. 1985;144:1137–40.Google Scholar
  14. 14.
    Chen YC, Lee S-H, Saenz Y, Lehman NL. Histologic findings of disc, end plate and neural elements after coblation of nucleus pulposus: an experimental nucleoplasty study. Spine J. 3:466–70.PubMedGoogle Scholar
  15. 15.
    Mirzai H, Tekin I, Yaman O, Bursali A. The results of nucleoplasty in patients with lumbar herniated disc: a prospective clinical study of 52 consecutive patients. Spine J. 2007;7:88–92; discussion 92-3.PubMedGoogle Scholar
  16. 16.
    Gerszten PC, Welch WC, King JT. Quality of life assessment in patients undergoing nucleoplasty-based percutaneous discectomy. J Neurosurg Spine. 2006;4:36–42.PubMedGoogle Scholar
  17. 17.
    Bokov A, Skorodumov A, Isrelov A, Stupak Y, Kukarin A. Differential treatment of nerve root compression pain caused by lumbar disc herniation applying nucleoplasty. Pain Physician. 13:469–80.Google Scholar
  18. 18.
    Onik G, Mooney V, Maroon JC, Wiltse L, Helms C, Schweigel J, et al. Automated percutaneous discectomy: a prospective multi-institutional study. Neurosurgery. 1990;26:228–32; discussion 232-3.PubMedGoogle Scholar
  19. 19.
    Paolo Tassi G, Choy DSJ, Hellinger J, Hellinger S, Lee S-H, Longo L. Percutaneous Laser Disc Decompression (PLDD): Experience and Results From Multiple Centers and 19,880 Procedures. AIP Conf Proc. American Institute of Physics; 2010. p. 69–75.Google Scholar
  20. 20.
    Singh V, Piryani C, Liao K. Evaluation of percutaneous disc decompression using coblation in chronic back pain with or without leg pain. Pain Physician. 2003;6:273–80.PubMedGoogle Scholar
  21. 21.
    Manchikanti L. Epidemiology of low back pain. Pain Physician. 2000;3:167–92.PubMedGoogle Scholar
  22. 22.
    Keshari KR, Lotz JC, Link TM, Hu S, Majumdar S, Kurhanewicz J. Lactic acid and proteoglycans as metabolic markers for discogenic back pain. Spine (Phila Pa 1976). 2008;33:312–7.Google Scholar
  23. 23.
    Podichetty VK. The aging spine: the role of inflammatory mediators in intervertebral disc degeneration. Cell Mol Biol (Noisy-le-Grand). 2007;53:4–18.Google Scholar
  24. 24.
    Ashton IK, Roberts S, Jaffray DC, Polak JM, Eisenstein SM. Neuropeptides in the human intervertebral disc. J Orthop Res. 1994;12:186–92.PubMedGoogle Scholar
  25. 25.
    Johnson WE, Evans H, Menage J, Eisenstein SM, El Haj A, Roberts S. Immunohistochemical detection of Schwann cells in innervated and vascularized human intervertebral discs. Spine (Phila Pa 1976). 2001;26:2550–7.Google Scholar
  26. 26.
    Melrose J, Roberts S, Smith S, Menage J, Ghosh P. Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine (Phila Pa 1976). 2002;27:1278–85.Google Scholar
  27. 27.
    Palmgren T, Grönblad M, Virri J, Kääpä E, Karaharju E. An immunohistochemical study of nerve structures in the anulus fibrosus of human normal lumbar intervertebral discs. Spine (Phila Pa 1976). 1999;24:2075–9.Google Scholar
  28. 28.
    Jackson HC, Winkelmann RK, Bickel WH. Nerve endings in the human lumbar spinal column and related structures. J Bone Joint Surg Am. 1966;48:1272–81.PubMedGoogle Scholar
  29. 29.
    Carragee EJ, Tanner CM, Khurana S, Hayward C, Welsh J, Date E, et al. The rates of false-positive lumbar discography in select patients without low back symptoms. Spine (Phila Pa 1976). 2000;25:1373–80; discussion 1381.Google Scholar
  30. 30.
    Walsh TR, Weinstein JN, Spratt KF, Lehmann TR, Aprill C, Sayre H. Lumbar discography in normal subjects. A controlled, prospective study. J Bone Joint Surg Am. 1990;72:1081–8.Google Scholar
  31. 31.
    Derby R, Howard MW, Grant JM, Lettice JJ, Van Peteghem PK, Ryan DP. The ability of pressure-controlled discography to predict surgical and nonsurgical outcomes. Spine (Phila Pa 1976). 1999;24:364–71; discussion 371-2.Google Scholar
  32. 32.
    Kapural L. Indications for minimally invasive disk and vertebral procedures. Pain Med. 2008;9:65–72.Google Scholar
  33. 33.
    Shih P, Wong AP, Smith TR, Lee AI, Fessler RG. Complications of open compared to minimally invasive lumbar spine decompression. J Clin Neurosci. 2011;18:1360–4.PubMedGoogle Scholar
  34. 34.
    Lee P, Liu JC, Fessler RG. Perioperative results following open and minimally invasive single-level lumbar discectomy. J Clin Neurosci. 2011;18:1667–70.PubMedGoogle Scholar
  35. 35.
    Peng CWB, Yue WM, Poh SY, Yeo W, Tan SB. Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine (Phila Pa 1976). 2009;34:1385–9.Google Scholar
  36. 36.
    Freeman BJC, Walters RM, Moore RJ, Fraser RD. Does intradiscal electrothermal therapy denervate and repair experimentally induced posterolateral annular tears in an animal model? Spine (Phila Pa 1976). 2003;28:2602–8.Google Scholar
  37. 37.
    Kleinstueck FS, Diederich CJ, Nau WH, Puttlitz CM, Smith JA, Bradford DS, et al. Temperature and thermal dose distributions during intradiscal electrothermal therapy in the cadaveric lumbar spine. Spine (Phila Pa 1976). 2003;28:1700–8.Google Scholar
  38. 38.
    Shah RV, Lutz GE, Lee J, Doty SB, Rodeo S. Intradiskal electrothermal therapy: a preliminary histologic study. Arch Phys Med Rehabil. 2001;82:1230–7.PubMedGoogle Scholar
  39. 39.
    Smith HP, McWhorter JM, Challa VR. Radiofrequency neurolysis in a clinical model. J Neurosurg. 1981;55:246–53.PubMedGoogle Scholar
  40. 40.
    Derby R, Baker RM, Lee C-H, Anderson PA. Evidence-informed management of chronic low back pain with intradiscal electrothermal therapy. Spine J. 2008;8:80–95.PubMedGoogle Scholar
  41. 41.
    Kleinstueck FS, Diederich CJ, Nau WH, Puttlitz CM, Smith JA, Bradford DS, et al. Acute biomechanical and histological effects of intradiscal electrothermal therapy on human lumbar discs. Spine (Phila Pa 1976). 2001(26):2198–207.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Troussier B, Lebas JF, Chirossel JP, Peoc’h M, Grand S, Leviel JL, et al. Percutaneous intradiscal radio-frequency thermocoagulation. A cadaveric study. Spine (Phila Pa 1976). 1995;20:1713–8.Google Scholar
  43. 43.
    Smith HP, McWhorter JM, Challa VR. Radiofrequency neurolysis in a clinical model. Neuropathological correlation J Neurosurg. 1981;55:246–53.PubMedGoogle Scholar
  44. 44.
    Freeman BJC. Efficacy of IDET and PIRFT for the treatment of discogenic low Back pain. Surg Low Back Pain. Berlin/Heidelberg: Springer; 2010.Google Scholar
  45. 45.
    Kapural L, Mekhail N, Hicks D, Kapural M, Sloan S, Moghal N, et al. Histological changes and temperature distribution studies of a novel bipolar radiofrequency heating system in degenerated and nondegenerated human cadaver lumbar discs. Pain Med. 2008;9:68–75.PubMedGoogle Scholar
  46. 46.
    Petersohn JD, Conquergood LR, Leung M. Acute histologic effects and thermal distribution profile of disc biacuplasty using a novel water-cooled bipolar electrode system in an in vivo porcine model. Pain Med. 2008;9:26–32.PubMedGoogle Scholar
  47. 47.
    Cohen SP, Larkin T, Abdi S, Chang A, Stojanovic M. Risk factors for failure and complications of intradiscal electrothermal therapy: a pilot study. Spine (Phila Pa 1976). 2003;28:1142–7.Google Scholar
  48. 48.
    Wetzel FT. Cauda equina syndrome from intradiscal electrothermal therapy. Neurology. 2001;56:1607.PubMedGoogle Scholar
  49. 49.
    Orr RD, Thomas SA. Intradural migration of broken IDET catheter causing a radiculopathy. J Spinal Disord Tech. 2005;18:185–7.PubMedGoogle Scholar
  50. 50.
    Hsia AW, Isaac K, Katz JS. Cauda equina syndrome from intradiscal electrothermal therapy. Neurology. 2000;55:320.PubMedGoogle Scholar
  51. 51.
    Kapural LCJ. Complications of minimally invasive procedures for discogenic pain. Tech Reg Anesth Pain Med. 2007;11:157–63.Google Scholar
  52. 52.
    Saal JA, Saal JS. Intradiscal electrothermal treatment for chronic discogenic low back pain: prospective outcome study with a minimum 2-year follow-up. Spine (Phila Pa 1976). 2002;27:966–73; discussion 973-4.Google Scholar
  53. 53.
    Saal JA, Saal JS. Intradiscal electrothermal treatment for chronic discogenic low back pain: a prospective outcome study with minimum 1-year follow-up. Spine (Phila Pa 1976). 2000;25:2622–7.Google Scholar
  54. 54.
    Urrútia G, Kovacs F, Nishishinya MB, Olabe J. Percutaneous thermocoagulation intradiscal techniques for discogenic low back pain. Spine (Phila Pa 1976). 2007;32:1146–54.Google Scholar
  55. 55.
    Pauza KJ, Howell S, Dreyfuss P, Peloza JH, Dawson K, Bogduk N. A randomized, placebo-controlled trial of intradiscal electrothermal therapy for the treatment of discogenic low back pain. Spine J. 2004;4:27–35.PubMedGoogle Scholar
  56. 56.
    Freeman BJC, Fraser RD, Cain CMJ, Hall DJ, Chapple DCL. A randomized, double-blind, controlled trial: intradiscal electrothermal therapy versus placebo for the treatment of chronic discogenic low back pain. Spine (Phila Pa 1976). 2005;30:2369–77; discussion 2378.Google Scholar
  57. 57.
    Helm S, Hayek SM, Benyamin RM, Manchikanti L. Systematic review of the effectiveness of thermal annular procedures in treating discogenic low back pain. Pain Physician. 2009;12:207–32.PubMedGoogle Scholar
  58. 58.
    Kapural L, Mekhail N, Korunda Z, Basali A. Intradiscal thermal annuloplasty for the treatment of lumbar discogenic pain in patients with multilevel degenerative disc disease. Anesth Analg. 2004;99:472–6, table of contents.PubMedGoogle Scholar
  59. 59.
    Webster BS, Verma S, Pransky GS. Outcomes of workers’ compensation claimants with low back pain undergoing intradiscal electrothermal therapy. Spine (Phila Pa 1976). 2004;29:435–41.Google Scholar
  60. 60.
    Barendse GA, van Den Berg SG, Kessels AH, Weber WE, van Kleef M. Randomized controlled trial of percutaneous intradiscal radiofrequency thermocoagulation for chronic discogenic back pain: lack of effect from a 90-second 70 C lesion. Spine (Phila Pa 1976). 2001;26:287–92.Google Scholar
  61. 61.
    Kapural L, Hayek S, Malak O, Arrigain S, Mekhail N. Intradiscal thermal annuloplasty versus intradiscal radiofrequency ablation for the treatment of discogenic pain: a prospective matched control trial. Pain Med. 2005;6:425–31.PubMedGoogle Scholar
  62. 62.
    Kvarstein G, Måwe L, Indahl A, Hol PK, Tennøe B, Digernes R, et al. A randomized double-blind controlled trial of intra-annular radiofrequency thermal disc therapy--a 12-month follow-up. Pain. 2009;145:279–86.PubMedGoogle Scholar
  63. 63.
    Karaman H, Tüfek A, Kavak GÖ, Kaya S, Yildirim ZB, Uysal E, et al. 6-month results of transdiscal biacuplasty on patients with discogenic low Back pain: preliminary findings. Int J Med Sci. 2011;8:1–8.Google Scholar
  64. 64.
    Kapural L. Intervertebral disk cooled bipolar radiofrequency (intradiskal biacuplasty) for the treatment of lumbar diskogenic pain: a 12-month follow-up of the pilot study. Pain Med. 2008;9:407–8.PubMedGoogle Scholar
  65. 65.
    Kapural L, Ng A, Dalton J, Mascha E, Kapural M, de la Garza M, et al. Intervertebral disc biacuplasty for the treatment of lumbar discogenic pain: results of a six-month follow-up. Pain Med. 2008;9:60–7.PubMedGoogle Scholar
  66. 66.
    Hippocrates. Aphorisms, Heraclitus on the universe. Volume 4. London: Heinemann; 1931.Google Scholar
  67. 67.
    Evans PJ. Cryoanalgesia. The application of low temperatures to nerves to produce anaesthesia or analgesia. Anaesthesia. 1981;36:1003–13.PubMedGoogle Scholar
  68. 68.
    Cooper I. Cryosurgery in modern medicine. J Neurol Sci. 1965;2:493.PubMedGoogle Scholar
  69. 69.
    Holden H. Practical cryosurgery. London: Pitman; 1975. p. 2.Google Scholar
  70. 70.
    Amoils S. The joule-Thomson cryoprobe. Arch Ophthalmol. 1978;78:201.Google Scholar
  71. 71.
    Evans PJ, Lloyd JW, Green CJ. Cryoanalgesia: the response to alterations in freeze cycle and temperature. Br J Anaesth. 1981;53:1121–7.PubMedGoogle Scholar
  72. 72.
    Barnard J, Lloyd J, Glynn C. Cryosurgery in the management of intractable facial pain. Br J Oral Surg. 1978;16:135–42.PubMedGoogle Scholar
  73. 73.
    Lloyd J, Barnard J, Glynn C. Cryo-analgesia: a new approach to pain relief. Lancet. 1976;2:932–4.PubMedGoogle Scholar
  74. 74.
    Peuria M, Krmpotic-Nemanic J, Markiewitz AD. Tunnel syndromes. Boca Raton: CRC Press; 1991.Google Scholar
  75. 75.
    Gander MJ, Soanes WA, Smith V. Experimental prostate surgery. Invest Urol. 1964;1:610.Google Scholar
  76. 76.
    Soanes WA, Ablin RJGM. Remission of metastatic lesions following cryosurgery in prostatic cancer: immunologic considerations. J Urol. 1970;104:154–9.PubMedGoogle Scholar
  77. 77.
    Ju H, Feng Y, Yang B-X, Wang J. Comparison of epidural analgesia and intercostal nerve cryoanalgesia for post-thoracotomy pain control. Eur J Pain. 2008;12:378–84.PubMedGoogle Scholar
  78. 78.
    Mustola ST, Lempinen J, Saimanen E, Vilkko P. Efficacy of thoracic epidural analgesia with or without intercostal nerve cryoanalgesia for postthoracotomy pain. Ann Thorac Surg. 2011;91:869–73.PubMedGoogle Scholar
  79. 79.
    Wood G, Lloyd J, Evans PJ, Bullingham RE, Britton B, Finch DR. Cryoanalgesia and day-case herniorrhaphy. Lancet. Elsevier;. 1979;314:479.Google Scholar
  80. 80.
    Klein DS, Schmidt RE. Chronic headache resulting from postoperative supraorbital neuralgia. Anesth Analg. 1991;73:490–1.PubMedGoogle Scholar
  81. 81.
    Moore W, Kolnick D, Tan J, Yu HS. CT guided percutaneous cryoneurolysis for post thoracotomy pain syndrome: early experience and effectiveness. Acad Radiol. 2010;17:603–6.PubMedGoogle Scholar
  82. 82.
    Raj P. Practical management of pain. Chicago: Yearbook; 1986.Google Scholar
  83. 83.
    Rosser JC, Goodwin M, Gabriel NHSL. The use of minilaparoscopy for conscious pain mapping. Tech Reg Anesth Pain Manag. 2001;5:152–6.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vwaire Orhurhu
    • 1
    Email author
  • Christopher Aiudi
    • 2
  • Ivan Urits
    • 1
  • Jatinder S. Gill
    • 1
  1. 1.Department of Anesthesia, Critical Care and Pain MedicineBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  2. 2.Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations