Severe Asthma in Children and Adolescents pp 19-46 | Cite as
Special Considerations in Preschool Age
Chapter
First Online:
Abstract
The diagnosis of asthma can be particularly difficult in young children, in whom wheezing is not always synonym with asthma. It is also difficult to predict which preschool children with wheeze will go on to be true asthmatics. In this chapter, we will characterize preschool wheezing and asthma and discuss early risk factors for the development of severe asthma. We will also review risk factors for severe acute wheezing in young children. Finally, we will describe the natural history and prognosis of wheezing and some of the attempts at early identification of children who will develop severe asthma.
Keywords
Asthma Children Preschool Wheezing Genetics Epigenetics Environment Risk factors Microbes PredictionReferences
- 1.Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018;391(10122):783–800.CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Keller T, Hohmann C, Standl M, Wijga AH, Gehring U, Melén E, et al. The sex-shift in single disease and multimorbid asthma and rhinitis during puberty – a study by MeDALL. Allergy. 2018;73(3):602–14.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Croisant S. Epidemiology of asthma: prevalence and burden of disease. Adv Exp Med Biol. 2014;795:17–29.CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Calışkan M, Bochkov YA, Kreiner-Møller E, Bønnelykke K, Stein MM, Du G, Bisgaard H, et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med. 2013;368(15):1398–407.CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Kaiser SV, Huynh T, Bacharier LB, Rosenthal JL, Bakel LA, Parkin PC, Cabana MD. Preventing exacerbations in preschoolers with recurrent wheeze: a meta-analysis. Pediatrics. 2016;137(6):e20154496.CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Bisgaard H, Szefler S. Prevalence of asthma-like symptoms in young children. Pediatr Pulmonol. 2007;42(8):723–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Kurukulaaratchy RJ, Fenn MH, Waterhouse LM, Matthews SM, Holgate ST, Arshad SH. Characterization of wheezing phenotypes in the first 10 years of life. Clin Exp Allergy. 2003;33(5):573–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Matricardi PM, Illi S, Grüber C, Keil T, Nickel R, Wahn U, Lau S. Wheezing in childhood: incidence, longitudinal patterns and factors predicting persistence. Eur Respir J. 2008;32(3):585–92.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Boersma NA, Meijneke RWH, Kelder JC, van der Ent CK, Balemans WAF. Sensitization predicts asthma development among wheezing toddlers in secondary healthcare. Pediatr Pulmonol. 2017;52(6):729–36.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Bacharier LB. The recurrently wheezing preschool child-benign or asthma in the making? Ann Allergy Asthma Immunol. 2015;115(6):463–70.CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Smit HA, Pinart M, Antó JM, Keil T, Bousquet J, Carlsen KH, et al. Childhood asthma prediction models: a systematic review. Lancet Respir Med. 2015;3(12):973–84.CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet. 1998;351(9111):1225–32.Google Scholar
- 13.Brand PL, Baraldi E, Bisgaard H, Boner AL, Castro-Rodriguez JA, Custovic A, et al. Definition, assessment and treatment of wheezing disorders in preschool children: an evidence-based approach. Eur Respir J. 2008;32(4):1096–110.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Bisgaard H, Hermansen MN, Bønnelykke K, Stokholm J, Baty F, Skytt NL, et al. Association of bacteria and viruses with wheezy episodes in young children: prospective birth cohort study. BMJ. 2010;341:c4978.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Jurca M, Pescatore AM, Goutaki M, Spycher BD, Beardsmore CS, Kuehni CE. Age-related changes in childhood wheezing characteristics: a whole population study. Pediatr Pulmonol. 2017;52(10):1250–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.van Wonderen KE, Geskus RB, van Aalderen WM, Mohrs J, Bindels PJ, van der Mark LB, Ter Riet G. Stability and predictiveness of multiple trigger and episodic viral wheeze in preschoolers. Clin Exp Allergy. 2016;46(6):837–47.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995;332(3):133–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Okpapi A, Friend AJ, Turner SW. Acute asthma and other recurrent wheezing disorders in children. Am Fam Physician. 2013;88(2):130–1.PubMedPubMedCentralGoogle Scholar
- 19.Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43:343–73.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Guilbert TW, Bacharier LB, Fitzpatrick AM. Severe asthma in children. J Allergy Clin Immunol Pract. 2014;2(5):489–500.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448(7152):470–3.CrossRefGoogle Scholar
- 22.Bouzigon E, Corda E, Aschard H, Dizier MH, Boland A, Bousquet J, et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med. 2008;359(19):1985–94.CrossRefGoogle Scholar
- 23.Bønnelykke K, Sleiman P, Nielsen K, Kreiner-Møller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46(1):51–5.CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112(17):5485–90.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Amat F, Louha M, Benet M, Guiddir T, Bourgoin-Heck M, Saint-Pierre P, et al. The IL-4 rs2070874 polymorphism may be associated with the severity of recurrent viral-induced wheeze. Pediatr Pulmonol. 2017;52(11):1435–42.CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Demenais F, Margaritte-Jeannin P, Barnes KC, Cookson WOC, Altmüller J, Ang W, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat Genet. 2018;50(1):42–53.CrossRefGoogle Scholar
- 27.Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA Methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–96.CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Xu CJ, Söderhäll C, Bustamante M, Baïz N, Gruzieva O, Gehring U, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med. 2018;6(5):379–88.CrossRefGoogle Scholar
- 29.Yang IV, Pedersen BS, Liu A, O’Connor GT, Teach SJ, Kattan M, et al. DNA methylation and childhood asthma in the inner city. J Allergy Clin Immunol. 2015;136(1):69–80.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Reese SE, Xu CJ, den Dekker HT, Lee MK, Sikdar S, Ruiz-Arenas C, et al. Epigenome-wide meta-analysis of DNA methylation and childhood asthma. J Allergy Clin Immunol. 2019;143(6):2062–74. https://doi.org/10.1016/j.jaci.2018.11.043.CrossRefPubMedGoogle Scholar
- 31.Custovic A, Lazic N, Simpson A. Pediatric asthma and development of atopy. Curr Opin Allergy Clin Immunol. 2013;13(2):173–80.CrossRefGoogle Scholar
- 32.Carroll WD, Lenney W, Child F, Strange RC, Jones PW, Whyte MK, et al. Asthma severity and atopy: how clear is the relationship? Arch Dis Child. 2006;91(5):405–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Lu KD, Phipatanakul W, Perzanowski MS, Balcer-Whaley S, Matsui EC. Atopy, but not obesity is associated with asthma severity among children with persistent asthma. J Asthma. 2016;53(10):1033–44.CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Henderson J, Granell R, Heron J, Sherriff A, Simpson A, Woodcock A, et al. Associations of wheezing phenotypes in the first 6 years of life with atopy, lung function and airway responsiveness in mid-childhood. Thorax. 2008;63(11):974–80.CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Miller EK, Avila PC, Khan YW, Word CR, Pelz BJ, Papadopoulos NG, et al.; Microbes, Allergy, and Asthma Committee. Wheezing exacerbations in early childhood: evaluation, treatment, and recent advances relevant to the genesis of asthma. J Allergy Clin Immunol Pract 2014;2(5):537–543.Google Scholar
- 36.Just J, Nicoloyanis N, Chauvin M, Pribil C, Grimfeld A, Duru G. Lack of eosinophilia can predict remission in wheezy infants? Clin Exp Allergy. 2008;38(5):767–73.CrossRefGoogle Scholar
- 37.Sharples J, Gupta A, Fleming L, Bossley CJ, Bracken-King M, Hall P, et al. Long-term effectiveness of a staged assessment for paediatric problematic severe asthma. Eur Respir J. 2012;40(1):264–7.CrossRefPubMedPubMedCentralGoogle Scholar
- 38.Young S, Arnott J, O’Keeffe PT, Le Souef PN, Landau LI. The association between early life lung function and wheezing during the first 2 yrs of life. Eur Respir J. 2000;15(1):151–7.CrossRefGoogle Scholar
- 39.Borrego LM, Stocks J, Leiria-Pinto P, Peralta I, Romeira AM, Neuparth N, et al. Lung function and clinical risk factors for asthma in infants and young children with recurrent wheeze. Thorax. 2009;64(3):203–9.CrossRefGoogle Scholar
- 40.Håland G, Carlsen KC, Sandvik L, Devulapalli CS, Munthe-Kaas MC, Pettersen M, Carlsen KH, ORAACLE. Reduced lung function at birth and the risk of asthma at 10 years of age. N Engl J Med. 2006;355(16):1682–9.CrossRefGoogle Scholar
- 41.Delacourt C, Benoist MR, Le Bourgeois M, Waernessyckle S, Rufin P, Brouard JJ, et al. Relationship between bronchial hyperresponsiveness and impaired lung function after infantile asthma. PLoS One. 2007;2(11):e1180.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Everard ML. The relationship between respiratory syncytial virus infections and the development of wheezing and asthma in children. Curr Opin Allergy Clin Immunol. 2006;6(1):56–61.CrossRefGoogle Scholar
- 43.Bønnelykke K, Coleman AT, Evans MD, Thorsen J, Waage J, Vissing NH, et al. Cadherin-related family member 3 genetics and rhinovirus C respiratory illnesses. Am J Respir Crit Care Med. 2018;197(5):589–94.CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Murray CS, Poletti G, Kebadze T, Morris J, Woodcock A, Johnston SL, Custovic A. Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children. Thorax. 2006;61(5):376–82.CrossRefGoogle Scholar
- 45.Saglani S. Viral infections and the development of asthma in children. Ther Adv Infect Dis. 2013;1(4):139–50.PubMedPubMedCentralGoogle Scholar
- 46.Zomer-Kooijker K, van der Ent CK, Ermers MJ, Uiterwaal CS, Rovers MM, Bont LJ, RSV Corticosteroid Study Group. Increased risk of wheeze and decreased lung function after respiratory syncytial virus infection. PLoS One. 2014;9(1):e87162.CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Eriksson M, Bennet R, Nilsson A. Wheezing following lower respiratory tract infections with respiratory syncytial virus and influenza A in infancy. Pediatr Allergy Immunol. 2000;11(3):193–7.CrossRefGoogle Scholar
- 48.Kotaniemi-Syrjänen A, Laatikainen A, Waris M, Reijonen TM, Vainionpää R, Korppi M. Respiratory syncytial virus infection in children hospitalized for wheezing: virus-specific studies from infancy to preschool years. Acta Paediatr. 2005;94(2):159–65.CrossRefGoogle Scholar
- 49.Bont L, Van Aalderen WM, Versteegh J, Brus F, Draaisma JT, Pekelharing-Berghuis M, et al. Airflow limitation during respiratory syncytial virus lower respiratory tract infection predicts recurrent wheezing. Pediatr Infect Dis J. 2001;20(3):277–82.CrossRefGoogle Scholar
- 50.Lemanske RF Jr, Jackson DJ, Gangnon RE, Evans MD, Li Z, Shult PA, et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol. 2005;116(3):571–7.CrossRefGoogle Scholar
- 51.Jartti T, Smits HH, Bønnelykke K, Bircan O, Elenius V, Konradsen JR, et al.; EAACI Task Force on Clinical Practice Recommendations on Preschool Wheeze. Bronchiolitis needs a revisit: distinguishing between virus entities and their treatments. Allergy 2019;74(1):40–52.Google Scholar
- 52.Heymann PW, Platts-Mills TA, Johnston SL. Role of viral infections, atopy and antiviral immunity in the etiology of wheezing exacerbations among children and young adults. Pediatr Infect Dis J. 2005;24(11 Suppl):S217–22; discussion S220–1CrossRefGoogle Scholar
- 53.Jartti T, Nieminen R, Vuorinen T, Lehtinen P, Vahlberg T, Gern J, et al. Short- and long-term efficacy of prednisolone for first acute rhinovirus-induced wheezing episode. J Allergy Clin Immunol. 2015;135(3):691–8. e9CrossRefGoogle Scholar
- 54.Bønnelykke K, Vissing NH, Sevelsted A, Johnston SL, Bisgaard H. Association between respiratory infections in early life and later asthma is independent of virus type. J Allergy Clin Immunol. 2015;136(1):81–6. e4CrossRefGoogle Scholar
- 55.Stenberg Hammar K, Niespodziana K, van Hage M, Kere J, Valenta R, Hedlin G, Söderhäll C. Reduced CDHR3 expression in children wheezing with rhinovirus. Pediatr Allergy Immunol. 2018;29(2):200–6.CrossRefGoogle Scholar
- 56.Landau LI. Parental smoking: asthma and wheezing illnesses in infants and children. Paediatr Respir Rev. 2001;2(3):202–6.PubMedGoogle Scholar
- 57.Fleming L, Murray C, Bansal AT, Hashimoto S, Bisgaard H, Bush A, et al.; U-BIOPRED Study Group. The burden of severe asthma in childhood and adolescence: results from the paediatric U-BIOPRED cohorts. Eur Respir J, 2015;46(5):1322–1333. Erratum in Eur Respir J. 2017;49(6). pii: 1550780.Google Scholar
- 58.Sonnenschein-van der Voort AM, de Kluizenaar Y, Jaddoe VW, Gabriele C, Raat H, Moll HA, Hofman A, et al. Air pollution, fetal and infant tobacco smoke exposure, and wheezing in preschool children: a population-based prospective birth cohort. Environ Health. 2012;11:91. https://doi.org/10.1186/1476-069X-11-91.CrossRefPubMedPubMedCentralGoogle Scholar
- 59.Peterson LA, Hecht SS. Tobacco, e-cigarettes, and child health. Curr Opin Pediatr. 2017;29(2):225–30.CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Lee-Sarwar KA, Bacharier LB, Litonjua AA. Strategies to alter the natural history of childhood asthma. Curr Opin Allergy Clin Immunol. 2017;17(2):139–45.CrossRefPubMedPubMedCentralGoogle Scholar
- 61.Makadia LD, Roper PJ, Andrews JO, Tingen MS. Tobacco use and smoke exposure in children: new trends, harm, and strategies to improve health outcomes. Curr Allergy Asthma Rep. 2017;17(8):55. https://doi.org/10.1007/s11882-017-0723-0.CrossRefPubMedGoogle Scholar
- 62.Flouris AD, Chorti MS, Poulianiti KP, Jamurtas AZ, Kostikas K, Tzatzarakis MN, et al. Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. Inhal Toxicol. 2013;25(2):91–101.CrossRefGoogle Scholar
- 63.Kamboj A, Spiller HA, Casavant MJ, Chounthirath T, Smith GA. Pediatric exposure to E-cigarettes, nicotine, and tobacco products in the United States. Pediatrics. 2016;137(6):e20160041.CrossRefGoogle Scholar
- 64.Gibbs K, Collaco JM, McGrath-Morrow SA. Impact of tobacco smoke and nicotine exposure on lung development. Chest. 2016;149(2):552–61.CrossRefPubMedPubMedCentralGoogle Scholar
- 65.Dinakar C, O’Connor GT. The health effects of electronic cigarettes. N Engl J Med. 2016;375(14):1372–81.CrossRefGoogle Scholar
- 66.Chatterjee K, Alzghoul B, Innabi A, Meena N. Is vaping a gateway to smoking: a review of the longitudinal studies. Int J Adolesc Med Health. 2016;30(3) https://doi.org/10.1515/ijamh-2016-0033. Review
- 67.Schultz ES, Litonjua AA, Melén E. Effects of long-term exposure to traffic-related air pollution on lung function in children. Curr Allergy Asthma Rep. 2017;17(6):41.CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Brigham EP, Woo H, McCormack M, Rice J, Koehler K, Vulcain T, et al. Omega-3 and omega-6 intake modifies asthma severity and response to indoor air pollution in children. Am J Respir Crit Care Med. 2019;199(12):1478–86. https://doi.org/10.1164/rccm.201808-1474OC.CrossRefPubMedGoogle Scholar
- 69.Schultz ES, Gruzieva O, Bellander T, Bottai M, Hallberg J, Kull I, et al. Traffic-related air pollution and lung function in children at 8 years of age: a birth cohort study. Am J Respir Crit Care Med. 2012;186(12):1286–91.CrossRefGoogle Scholar
- 70.Bloomberg GR. The influence of environment, as represented by diet and air pollution, upon incidence and prevalence of wheezing illnesses in young children. Curr Opin Allergy Clin Immunol. 2011;11(2):144–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 71.Horne BD, Joy EA, Hofmann MG, Gesteland PH, Cannon JB, Lefler JS, et al. Short-term elevation of fine particulate matter air pollution and acute lower respiratory infection. Am J Respir Crit Care Med. 2018;198(6):759–66.CrossRefPubMedPubMedCentralGoogle Scholar
- 72.Gehring U, Wijga AH, Hoek G, Bellander T, Berdel D, Brüske I, et al. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: a population-based birth cohort study. Lancet Respir Med. 2015;3(12):933–42.CrossRefPubMedPubMedCentralGoogle Scholar
- 73.Nordling E, Berglind N, Melén E, Emenius G, Hallberg J, Nyberg F, et al. Traffic-related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology. 2008;19(3):401–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 74.Hehua Z, Qing C, Shanyan G, Qijun W, Yuhong Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: a systematic review. Environ Res. 2017;159:519–30.CrossRefGoogle Scholar
- 75.Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. 2007;357(19):1946–55.CrossRefGoogle Scholar
- 76.Been JV, Lugtenberg MJ, Smets E, van Schayck CP, Kramer BW, Mommers M, Sheikh A. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med. 2014;11(1):e1001596.CrossRefPubMedPubMedCentralGoogle Scholar
- 77.Baker CD, Alvira CM. Disrupted lung development and bronchopulmonary dysplasia: opportunities for lung repair and regeneration. Curr Opin Pediatr. 2014;26(3):306–14.CrossRefPubMedPubMedCentralGoogle Scholar
- 78.Thunqvist P, Gustafsson PM, Schultz ES, Bellander T, Berggren-Broström E, Norman M. Lung function at 8 and 16 years after moderate-to-late preterm birth: a prospective cohort study. Pediatrics. 2016;137(4) https://doi.org/10.1542/peds.2015-2056.
- 79.Cullinan P, MacNeill SJ, Harris JM, Moffat S, White C, Mills P, Newman Taylor AJ. Early allergen exposure, skin prick responses, and atopic wheeze at age 5 in English children: a cohort study. Thorax. 2004;59(10):855–61.CrossRefPubMedPubMedCentralGoogle Scholar
- 80.Goksör E, Amark M, Alm B, Gustafsson PM, Wennergren G. Asthma symptoms in early childhood—what happens then? Acta Paediatr. 2006;95(4):471–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 81.Lynch SV, Wood RA, Boushey H, Bacharier LB, Bloomberg GR, Kattan M, et al. Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol. 2014;134(3):593–601.e12.CrossRefPubMedPubMedCentralGoogle Scholar
- 82.Lødrup Carlsen KC, Roll S, Carlsen KH, Mowinckel P, Wijga AH, Brunekreef B, GALEN WP 1.5 ‘Birth Cohorts’ working group. Does pet ownership in infancy lead to asthma or allergy at school age? Pooled analysis of individual participant data from 11 European birth cohorts. PLoS One. 2012;7(8):e43214.CrossRefPubMedPubMedCentralGoogle Scholar
- 83.Brussee JE, Smit HA, van Strien RT, Corver K, Kerkhof M, Wijga AH, et al. Allergen exposure in infancy and the development of sensitization, wheeze, and asthma at 4 years. J Allergy Clin Immunol. 2005;115(5):946–52.CrossRefPubMedPubMedCentralGoogle Scholar
- 84.Casas L, Sunyer J, Tischer C, Gehring U, Wickman M, Garcia-Esteban R, et al. Early-life house dust mite allergens, childhood mite sensitization, and respiratory outcomes. Allergy. 2015;70(7):820–7.CrossRefPubMedPubMedCentralGoogle Scholar
- 85.Tovey ER, Almqvist C, Li Q, Crisafulli D, Marks GB. Nonlinear relationship of mite allergen exposure to mite sensitization and asthma in a birth cohort. J Allergy Clin Immunol. 2008;122(1):114–8.e1–5.CrossRefPubMedPubMedCentralGoogle Scholar
- 86.Dick S, Friend A, Dynes K, AlKandari F, Doust E, Cowie H, et al. A systematic review of associations between environmental exposures and development of asthma in children aged up to 9 years. BMJ Open. 2014;4(11):e006554.CrossRefPubMedPubMedCentralGoogle Scholar
- 87.Murray CS, Foden P, Sumner H, Shepley E, Custovic A, Simpson A. Preventing severe asthma exacerbations in children. A randomized trial of mite-impermeable bedcovers. Am J Respir Crit Care Med. 2017;196(2):150–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 88.Wolsk HM, Chawes BL, Litonjua AA, Hollis BW, Waage J, Stokholm J, et al. Prenatal vitamin D supplementation reduces risk of asthma/recurrent wheeze in early childhood: a combined analysis of two randomized controlled trials. PLoS One. 2017;12(10):e0186657.CrossRefPubMedPubMedCentralGoogle Scholar
- 89.Stenberg Hammar K, Hedlin G, Konradsen JR, Nordlund B, Kull I, Giske CG, Pedroletti C, et al. Subnormal levels of vitamin D are associated with acute wheeze in young children. Acta Paediatr. 2014;103(8):856–61.CrossRefPubMedPubMedCentralGoogle Scholar
- 90.Chawes BL, Bønnelykke K, Stokholm J, Vissing NH, Bjarnadóttir E, Schoos AM, et al. Effect of vitamin d3 supplementation during pregnancy on risk of persistent wheeze in the offspring: a randomized clinical trial. JAMA. 2016;315(4):353–61.CrossRefPubMedPubMedCentralGoogle Scholar
- 91.Anderson LN, Chen Y, Omand JA, Birken CS, Parkin PC, To T, Maguire JL, TARGet Kids Collaboration. Vitamin D exposure during pregnancy, but not early childhood, is associated with risk of childhood wheezing. J Dev Orig Health Dis. 2015;6(4):308–16.CrossRefPubMedPubMedCentralGoogle Scholar
- 92.Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect. 2011;119(6):748–56.CrossRefPubMedPubMedCentralGoogle Scholar
- 93.Thacher JD, Gruzieva O, Pershagen G, Melén E, Lorentzen JC, Kull I, Bergström A. Mold and dampness exposure and allergic outcomes from birth to adolescence: data from the BAMSE cohort. Allergy. 2017;72(6):967–74.CrossRefPubMedPubMedCentralGoogle Scholar
- 94.Sauni R, Uitti J, Jauhiainen M, Kreiss K, Sigsgaard T, Verbeek JH. Remediating buildings damaged by dampness and mould for preventing or reducing respiratory tract symptoms, infections and asthma (Review). Evid Based Child Health. 2013;8(3):944–1000.CrossRefPubMedPubMedCentralGoogle Scholar
- 95.Hanson M, Gluckman P. Developmental origins of noncommunicable disease: population and public health implications. Am J Clin Nutr. 2011;94(6 Suppl):1754S–8S.CrossRefPubMedPubMedCentralGoogle Scholar
- 96.Forno E, Young OM, Kumar R, Simhan H, Celedón JC. Maternal obesity in pregnancy, gestational weight gain, and risk of childhood asthma. Pediatrics. 2014;134(2):e535–46.CrossRefPubMedPubMedCentralGoogle Scholar
- 97.Ekström S, Magnusson J, Kull I, Lind T, Almqvist C, Melén E, Bergström A. Maternal body mass index in early pregnancy and offspring asthma, rhinitis and eczema up to 16 years of age. Clin Exp Allergy. 2015;45(1):283–91.CrossRefPubMedPubMedCentralGoogle Scholar
- 98.Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol. 2018;141(4):1169–79.CrossRefPubMedPubMedCentralGoogle Scholar
- 99.van Meel ER, Jaddoe VWV, Bønnelykke K, de Jongste JC, Duijts L. The role of respiratory tract infections and the microbiome in the development of asthma: a narrative review. Pediatr Pulmonol. 2017;52(10):1363–70.CrossRefPubMedPubMedCentralGoogle Scholar
- 100.van Meel ER, den Dekker HT, Elbert NJ, Jansen PW, Moll HA, Reiss IK, et al. A population-based prospective cohort study examining the influence of early-life respiratory tract infections on school-age lung function and asthma. Thorax. 2018;73(2):167–73.CrossRefPubMedPubMedCentralGoogle Scholar
- 101.Dondi A, Calamelli E, Piccinno V, Ricci G, Corsini I, Biagi C, Lanari M. Acute asthma in the pediatric emergency department: infections are the main triggers of exacerbations. Biomed Res Int. 2017;2017:9687061.CrossRefPubMedPubMedCentralGoogle Scholar
- 102.Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–60.CrossRefPubMedPubMedCentralGoogle Scholar
- 103.von Mutius E, Radon K. Living on a farm: impact on asthma induction and clinical course. Immunol Allergy Clin North Am. 2008;28(3):631–47. ix-xCrossRefGoogle Scholar
- 104.Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrländer C, et al.; GABRIELA Transregio 22 Study Group. Exposure to environmental microorganisms and childhood asthma. N Engl J Med 2011;364(8):701–709.Google Scholar
- 105.Ober C, Sperling AI, von Mutius E, Vercelli D. Immune development and environment: lessons from Amish and Hutterite children. Curr Opin Immunol. 2017;48:51–60.CrossRefPubMedPubMedCentralGoogle Scholar
- 106.Müller-Rompa SE, Markevych I, Hose AJ, Loss G, Wouters IM, Genuneit J, et al.; GABRIELA Study Group. An approach to the asthma-protective farm effect by geocoding: good farms and better farms. Pediatr Allergy Immunol 2018;29(3):275–282.Google Scholar
- 107.Weber J, Illi S, Nowak D, Schierl R, Holst O, von Mutius E, Ege MJ. Asthma and the hygiene hypothesis. Does cleanliness matter? Am J Respir Crit Care Med. 2015;191(5):522–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 108.Swartz J, Aronsson B, Lindblad F, Lindblad F, Järnbert-Pettersson H, Scheynius A, et al. Vaccination and allergic sensitization in early childhood – the ALADDIN birth cohort. EClinicalMedicine. 2018;4–5:92–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 109.Earl CS, An SQ, Ryan RP. The changing face of asthma and its relation with microbes. Trends Microbiol. 2015;23(7):408–18.CrossRefPubMedPubMedCentralGoogle Scholar
- 110.Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578.CrossRefPubMedPubMedCentralGoogle Scholar
- 111.Mortensen MS, Brejnrod AD, Roggenbuck M, Abu Al-Soud W, Balle C, Krogfelt KA, et al. The developing hypopharyngeal microbiota in early life. Microbiome. 2016;4(1):70.CrossRefPubMedPubMedCentralGoogle Scholar
- 112.Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17(5):704–15.CrossRefPubMedPubMedCentralGoogle Scholar
- 113.Biesbroek G, Tsivtsivadze E, Sanders EA, Montijn R, Veenhoven RH, Keijser BJ, Bogaert D. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med. 2014;190(11):1283–92.CrossRefGoogle Scholar
- 114.Bisgaard H, et al. Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med. 2007;357(15):1487–95.CrossRefGoogle Scholar
- 115.Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;15(5):259–70.CrossRefPubMedPubMedCentralGoogle Scholar
- 116.Eldeirawi K, Persky VW. History of ear infections and prevalence of asthma in a national sample of children aged 2 to 11 years: the Third National Health and Nutrition Examination Survey, 1988 to 1994. Chest. 2004;125(5):1685–92.CrossRefPubMedPubMedCentralGoogle Scholar
- 117.Noverr MC, Huffnagle GB. The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy. 2005;35(12):1511–20.CrossRefPubMedPubMedCentralGoogle Scholar
- 118.Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842–50.CrossRefPubMedPubMedCentralGoogle Scholar
- 119.Moraes TJ, Sears MR. Lower respiratory infections in early life are linked to later asthma. Thorax. 2018;73(2):105–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 120.Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, CHILD Study Investigators. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152.CrossRefPubMedPubMedCentralGoogle Scholar
- 121.Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–91.CrossRefPubMedPubMedCentralGoogle Scholar
- 122.Huang YJ, Boushey HA. The microbiome in asthma. J Allergy Clin Immunol. 2015;135(1):25–30.CrossRefPubMedPubMedCentralGoogle Scholar
- 123.Webley WC, Hahn DL. Infection-mediated asthma: etiology, mechanisms and treatment options, with focus on Chlamydia pneumoniae and macrolides. Respir Res. 2017;18(1):98.CrossRefPubMedPubMedCentralGoogle Scholar
- 124.Webley WC, Salva PS, Andrzejewski C, Cirino F, West CA, Tilahun Y, Stuart ES. The bronchial lavage of pediatric patients with asthma contains infectious Chlamydia. Am J Respir Crit Care Med. 2005;171(10):1083–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 125.Esposito S, Blasi F, Arosio C, Fioravanti L, Fagetti L, Droghetti R, et al. Importance of acute Mycoplasma pneumoniae and Chlamydia pneumoniae infections in children with wheezing. Eur Respir J. 2000;16(6):1142–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 126.Qureshi MH, Garvy BA. Neonatal T cells in an adult lung environment are competent to resolve Pneumocystis carinii pneumonia. J Immunol. 2001;166(9):5704–11.CrossRefPubMedPubMedCentralGoogle Scholar
- 127.Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372(9):803–13.CrossRefPubMedPubMedCentralGoogle Scholar
- 128.Dogaru CM, Nyffenegger D, Pescatore AM, Spycher BD, Kuehni CE. Breastfeeding and childhood asthma: systematic review and meta-analysis. Am J Epidemiol. 2014;179(10):1153–67.CrossRefPubMedPubMedCentralGoogle Scholar
- 129.Goksör E, Gustafsson PM, Alm B, Amark M, Wennergren G. Reduced airway function in early adulthood among subjects with wheezing disorder before two years of age. Pediatr Pulmonol. 2008;43(4):396–403.CrossRefPubMedPubMedCentralGoogle Scholar
- 130.Piippo-Savolainen E, Remes S, Kannisto S, Korhonen K, Korppi M. Asthma and lung function 20 years after wheezing in infancy: results from a prospective follow-up study. Arch Pediatr Adolesc Med. 2004;158(11):1070–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 131.Goksör E, Åmark M, Alm B, Ekerljung L, Lundbäck B, Wennergren G. High risk of adult asthma following severe wheezing in early life. Pediatr Pulmonol. 2015;50(8):789–97.CrossRefGoogle Scholar
- 132.Mulholland A, Ainsworth A, Pillarisetti N. Tools in asthma evaluation and management: when and how to use them? Indian J Pediatr. 2018;85(8):651–7.CrossRefGoogle Scholar
- 133.Chang TS, Lemanske RF Jr, Guilbert TW, Gern JE, Coen MH, Evans MD, et al. Evaluation of the modified asthma predictive index in high-risk preschool children. J Allergy Clin Immunol Pract. 2013;1(2):152–6.CrossRefGoogle Scholar
- 134.Vial Dupuy A, Amat F, Pereira B, Labbe A, Just J. A simple tool to identify infants at high risk of mild to severe childhood asthma: the persistent asthma predictive score. J Asthma. 2011;48(10):1015–21.CrossRefGoogle Scholar
- 135.Sly PD, Boner AL, Björksten B, Bush A, Custovic A, Eigenmann PA. Early identification of atopy in the prediction of persistent asthma in children. Lancet. 2008;372(9643):1100–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 136.Caudri D, Wijga A, CM AS, Hoekstra M, Postma DS, Koppelman GH, et al. Predicting the long-term prognosis of children with symptoms suggestive of asthma at preschool age. J Allergy Clin Immunol. 2009;124(5):903–10.e1–7.CrossRefGoogle Scholar
- 137.Midodzi WK, Rowe BH, Majaesic CM, Saunders LD, Senthilselvan A. Predictors for wheezing phenotypes in the first decade of life. Respirology. 2008;13(4):537–45.CrossRefGoogle Scholar
- 138.Pescatore AM, et al. A simple asthma prediction tool for preschool children with wheeze or cough. J Allergy Clin Immunol. 2014;133(1):111–8.e1–13.CrossRefGoogle Scholar
- 139.Grabenhenrich LB, Reich A, Fischer F, Zepp F, Forster J, Schuster A, et al. The novel 10-item asthma prediction tool: external validation in the German MAS birth cohort. PLoS One. 2014;9(12):e115852.CrossRefPubMedPubMedCentralGoogle Scholar
- 140.Devulapalli CS, Carlsen KC, Håland G, Munthe-Kaas MC, Pettersen M, Mowinckel P, Carlsen KH. Severity of obstructive airways disease by age 2 years predicts asthma at 10 years of age. Thorax. 2008;63(1):8–13.CrossRefGoogle Scholar
- 141.Pijnenburg MW. The role of FeNO in predicting asthma. Front Pediatr. 2019;7:41.CrossRefPubMedPubMedCentralGoogle Scholar
- 142.Caudri D, Wijga AH, Hoekstra MO, Kerkhof M, Koppelman GH, Brunekreef B, et al. Prediction of asthma in symptomatic preschool children using exhaled nitric oxide, Rint and specific IgE. Thorax. 2010;65(9):801–7.CrossRefGoogle Scholar
- 143.Singer F, Luchsinger I, Inci D, Knauer N, Latzin P, Wildhaber JH, Moeller A. Exhaled nitric oxide in symptomatic children at preschool age predicts later asthma. Allergy. 2013;68(4):531–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 144.Vilmann L, Buchvald F, Green K, Nielsen KG. Fractional exhaled nitric oxide and multiple breath nitrogen washout in preschool healthy and asthmatic children. Respir Med. 2017;133:42–7.CrossRefGoogle Scholar
- 145.Smolinska A, Klaassen EM, Dallinga JW, van de Kant KD, Jobsis Q, Moonen EJ, et al. Profiling of volatile organic compounds in exhaled breath as a strategy to find early predictive signatures of asthma in children. PLoS One. 2014;9(4):e95668.CrossRefPubMedPubMedCentralGoogle Scholar
- 146.Klaassen EM, van de Kant KD, Jöbsis Q, van Schayck OC, Smolinska A, Dallinga JW, et al. Exhaled biomarkers and gene expression at preschool age improve asthma prediction at 6 years of age. Am J Respir Crit Care Med. 2015;191(2):201–7.CrossRefGoogle Scholar
- 147.Chatzimichail E, Paraskakis E, Sitzimi M, Rigas A. An intelligent system approach for asthma prediction in symptomatic preschool children. Comput Math Methods Med. 2013;2013:240182.CrossRefPubMedPubMedCentralGoogle Scholar
- 148.Garcia-Marcos L, Edwards J, Kennington E, Aurora P, Baraldi E, Carraro S, et al. EARIP Collaboration. Priorities for future research into asthma diagnostic tools: a PAN-EU consensus exercise from the European asthma research innovation partnership (EARIP). Clin Exp Allergy. 2018;48(2):104–20.CrossRefGoogle Scholar
- 149.Hallberg J, Thunqvist P, Schultz ES, Kull I, Bottai M, Merritt AS, et al. Asthma phenotypes and lung function up to 16 years of age-the BAMSE cohort. Allergy. 2015;70(6):667–73.CrossRefGoogle Scholar
- 150.Morgan WJ, Stern DA, Sherrill DL, Guerra S, Holberg CJ, Guilbert TW, et al. Outcome of asthma and wheezing in the first 6 years of life: follow-up through adolescence. Am J Respir Crit Care Med. 2005;172(10):1253–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 151.Lukkarinen M, Koistinen A, Turunen R, Lehtinen P, Vuorinen T, Jartti T. Rhinovirus-induced first wheezing episode predicts atopic but not nonatopic asthma at school age. J Allergy Clin Immunol. 2017;140(4):988–95.CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2020