Like Mother, Like Child: Investigating Perinatal and Maternal Health Stress in Post-medieval London

  • Claire M. HodsonEmail author
  • Rebecca Gowland
Part of the Bioarchaeology and Social Theory book series (BST)


Post-Medieval London (sixteenth-nineteenth centuries) was a stressful environment for the poor. Overcrowded and squalid housing, physically demanding and risky working conditions, air and water pollution, inadequate diet and exposure to infectious diseases created high levels of morbidity and low life expectancy. All of these factors pressed with particular severity on the lowest members of the social strata, with burgeoning disparities in health between the richest and poorest. Foetal, perinatal and infant skeletal remains provide the most sensitive source of bioarchaeological information regarding past population health and in particular maternal well-being. This chapter examined the evidence for chronic growth and health disruption in 136 foetal, perinatal and infant skeletons from four low-status cemetery samples in post-medieval London. The aim of this study was to consider the impact of poverty on the maternal-infant nexus, through an analysis of evidence of growth disruption and pathological lesions. The results highlight the dire consequences of poverty in London during this period from the very earliest moments of life.


Foetal Infant Growth disruption Pathological lesions Socioeconomic status Poverty DOHaD 



The authors wish to thank Dr. Rebecca Redfern and Jelena Bekvalac at the Centre for Human Bioarchaeology, Museum of London, for their support in enabling access to the skeletal collections. The authors also wish to express their gratitude to the Wenner-Gren Foundation for providing funding for the colloquium from which this book transpired. Dr. Claire Hodson would also like to thank the AHRC for her doctoral funding, during which data presented here was collected (Grant Number: AH/K502996/1).


  1. Abbott, F. C. (1901). Intrauterine rickets. The British Medical Journal, 2(2123), 597–599.Google Scholar
  2. Agarwal, S. (2016). Bone morphologies and histories: Life course approaches in bioarchaeology. Yearboβok of Physical Anthropology, 159(S61), 130–149.CrossRefGoogle Scholar
  3. Aiello, L. C., & Wells, J. C. K. (2002). Energetics and the evolution of the genus homo. Annual Review of Anthropology, 31(1), 323–338.CrossRefGoogle Scholar
  4. AlQahtani, S. J., Hector, M. P., & Liversidge, H. M. (2010). The London atlas of human tooth development and eruption. American Journal of Physical Anthropology, 142(3), 481–490.CrossRefGoogle Scholar
  5. AlQahtani, S. J., Hector, M. P., & Liversidge, H. M. (2014). Accuracy of dental age estimation charts: Schour and Massler, Ubelaker, and the London Atlas. American Journal of Physical Anthropology, 154(1), 70–78.CrossRefGoogle Scholar
  6. Anatoliotaki, M., Tsilimigaki, A., Tsekoura, T., Schinaki, A., Stefanaki, S., & Nikolaidou, P. (2003). Congenital rickets due to maternal vitamin D deficiency in a sunny island of Greece. ActaPaediatrica, 92(3), 389–391.Google Scholar
  7. Armelagos, G. J., & Goodman, A. H. (1991). The concept of stress and its relevance to studies of adaptation in prehistoric populations. Collegium Antropologicum, 15, 45–58.Google Scholar
  8. Aufderheide, A., & Rodríguez-Martín, C. (1998). The Cambridge encyclopedia of human paleopathology. Cambridge: Cambridge University Press.Google Scholar
  9. Babones, S. J. (2008). Income inequality and population health: Correlation and causality. Social Science and Medicine, 66(7), 1614–1626.CrossRefGoogle Scholar
  10. Bang, G. (1989). Age changes in teeth; developmental and regressive. Age Markers in the Human Skeleton, 1, 211-235.Google Scholar
  11. Barker, D. J. P. (1994). Mothers, babies, and disease in later life. London: BMJ Publishing Group.Google Scholar
  12. Barker, D. J. P. (2012). Developmental origins of chronic disease. Public Health, 126(3), 185–189.CrossRefGoogle Scholar
  13. Barker, D., & Osmond, C. (1986). Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet, 8489(1), 1077–1081.CrossRefGoogle Scholar
  14. Barker, D. J. P., Eriksson, J. G., Forsén, T., & Osmond, C. (2002). Fetal origins of adult disease: Strength of effects and biological basis. International Journal of Epidemiology, 31(6), 1235–1239.CrossRefGoogle Scholar
  15. Barker, D. J. P., Lampl, M., Roseboom, T., & Winder, N. (2012). Resource allocation in utero and health in later life. Placenta, 33(S2), 30–34.CrossRefGoogle Scholar
  16. Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D’Udine, B., Foley, R. A., Gluckman, P., Godfrey, K., Kirkwood, T., Mirazón Lahr, M., McNamara, J., Metcalfe, N. B., Monaghan, P., Spencer, H. G., & Sultan, S. E. (2004). Developmental plasticity and human health. Nature, 430(6998), 419–421.CrossRefGoogle Scholar
  17. Baxter, J. E. (2005). The archaeology of childhood: Children, gender, and material culture. California: AltaMira Press.Google Scholar
  18. Beaumont, J., Geber, J., Power, N., Wilson, A., Lee-Thorpe, J., & Montgomery, J. (2013). Victims and survivors: Stable isotopes used to identify migrants from the great Irish famine to 19th century London. American Journal of Physical Anthropology, 150(1), 87–98.CrossRefGoogle Scholar
  19. Beier, A. L. (1978). Social problems in Elizabethan London. The Journal of Interdisciplinary History, 9(2), 203–221.CrossRefGoogle Scholar
  20. Besbes, L. G., Hadded, S., Meriem, C. B., Golli, M., Najjar, M. F., & Guediche, M. N. (2010). Infantile scurvy: Two case reports. International Journal Of Pediatrics, 2010(717518), 1–4.CrossRefGoogle Scholar
  21. Boersma, G. J., & Tamashiro, K. L. (2015). Individual differences in the effects of prenatal stress exposure in rodents. Neurobiology of Stress, 1, 100–108.CrossRefGoogle Scholar
  22. Bogin, B. (2001). The growth of humanity. New York: Wiley-Liss.Google Scholar
  23. Bogin, B. (2012). The evolution of human growth. In N. Cameron & B. Bogin (Eds.), Human growth and development (pp. 287–324). London: Elsevier.CrossRefGoogle Scholar
  24. Bogin, B., & Loucky, J. (1997). Plasticity, political economy, and physical growth status of Guatemala children living in the United States. American Journal of Physical Anthropology, 102(1), 17–32.CrossRefGoogle Scholar
  25. Bogin, B., & Rios, L. (2003). Rapid morphological change in living humans; implications for modern human origins.Comparative. Biochemistry and Physiology, 136(1), 71–84.CrossRefGoogle Scholar
  26. Bolaños, M. V., Manrique, M. C., Bolaños, M. J., & Briones, M. T. (2000). Approaches to chronological age assessment based on dental calcification. Forensic Science International, 110(2), 97–106.CrossRefGoogle Scholar
  27. Boulton, J. (2000). ‘It is extreme necessity that makes me do this’: Some ‘survival strategies’ of pauper households in London’s west end during the early eighteenth century. International Review of Social History, 45(S8), 47–69.CrossRefGoogle Scholar
  28. Brickley, M., & Ives, R. (2006). Skeletal manifestations of infantile scurvy. American Journal of Physical Anthropology, 129(2), 163–172.CrossRefGoogle Scholar
  29. Brickley, M., Miles, A., & Stainer, H. (1999). The Cross Bones Burial Ground, Redcross Way, Southwark, London: Archaeological Excavations (1991–1998) for the London Underground Limited Jubilee Line Extension Project (MOLAS monograph 3). London: Museum of London Archaeology Service.Google Scholar
  30. Bush, H. (1991). Concepts of health and stress. In H. Bush & M. Zvelebil (Eds.), Health in past societies: Biocultural interpretations of human skeletal remains in archaeological contexts (BAR International Series 567) (pp. 11–21). Oxford: BAR Publishing.Google Scholar
  31. Bush, H., & Zvelebil, M. (1991). Pathology and health in past societies: An introduction. In H. Bush & M. Zvelebil (Eds.), Health in past societies: Biocultural interpretations of human skeletal remains in archaeological contexts (BAR International Series 567) (pp. 3–9). Oxford: BAR Publishing.Google Scholar
  32. Cameron, N., & Demerath, E. W. (2002). Critical periods in human growth and their relationship to diseases of aging. Yearbook of Physical Anthropology, 45(S35), 159–184.CrossRefGoogle Scholar
  33. Cattaneo, C. (1991). Direct genetic and immunological information in the reconstruction of health and biocultural conditions of past populations: A new prospect for archaeology. In H. Bush & M. Zvelebil (Eds.), BAR international series 567: Health in Past Societies: Biocultural interpretations of human skeletal remains in archaeological contexts (pp. 39–52). Oxford: BAR Publishing.Google Scholar
  34. Cavigelli, S. A., & Chaudhry, H. S. (2012). Social status, glucocorticoids, immune function, and health: Can animal studies help us understand human socioeconomic-status-related health disparities? Hormones and Behavior, 62(3), 295–313.CrossRefGoogle Scholar
  35. Chmurzynska, A. (2010). Fetal programming: Link between early nutrition, DNA methylation, and complex diseases. Nutrition Reviews, 68(2), 87–98.CrossRefGoogle Scholar
  36. Clukay, C. J., Hughes, D. A., Rodney, N. C., Kertes, D. A., & Mulligan, C. J. (2018). DNA methylation complex genes in relation to stress and genome-wide methylation in mother-newborn dyads. American Journal of Physical Anthropology, 165(1), 173–182.CrossRefGoogle Scholar
  37. Dancause, K. N., Cao, X. J., Veru, F., Xu, S., Long, H., Yu, C., Laplante, D. P., Walker, C. D., & King, S. (2012). Brief communication: Prenatal and early postnatal stress exposure influences long bone length in adult rat offspring. American Journal of Physical Anthropology, 149(2), 307–311.CrossRefGoogle Scholar
  38. De la Rúa, C., Izagirre, N., & Manzano, C. (1995). Environmental stress in a medieval population of the Basque country. Homo, 45, 268–289.Google Scholar
  39. DeWitte, S. N., Hughes-Morey, G., Bekvalac, J., & Karsten, J. (2016). Wealth, health and frailty in industrial-era London. Annals of Human Biology, 43(3), 241–254.CrossRefGoogle Scholar
  40. Dowler, E. A., & Dobson, B. M. (1997). Nutrition and poverty in Europe: An overview. Proceedings of the Nutrition Society, 56(1A), 51–62.CrossRefGoogle Scholar
  41. Dyson, L., Malt, D., Wellman, T., & White, B. (1987). Excavations at Broad Street Station: The Broadgate Development Archive Report. City of London (Unpublished).Google Scholar
  42. Eisenberg, D. T. A., Borja, J. B., Hayes, M. G., & Kuzawa, C. W. (2017). Early life infection, but not breastfeeding, predicts adult blood telomere lengths in the Philippines. American Journal of Human Biology, 29(4), 1–11.Google Scholar
  43. Farmer, P. (1996). Social inequalities and emerging infectious diseases. Emerging Infectious Diseases, 2(4), 259–269.CrossRefGoogle Scholar
  44. Feinstein, J. S. (1993). The relationship between socioeconomic status and health: A review of the literature. The Milbank Quarterly, 71(2), 279–322.CrossRefGoogle Scholar
  45. Fildes, V. (1988). Wet nursing. New York: Basil Blackwell Ltd..Google Scholar
  46. Fildes, V. (1995). The culture and biology of breastfeeding: An historical review of Western Europe. In P. Stuart-Macadam & K. Dettwyker (Eds.), Breastfeeding: Biocultural perspectives (pp. 101–126). Hawthorne: Aldine De Gruyter.Google Scholar
  47. Finlay, N. (2013). Archaeologies of the beginnings of life. World Archaeology, 45(2), 207–214.CrossRefGoogle Scholar
  48. Floud, R., Wachter, K. W., & Gregory, A. (1990). Height, health and history: Nutritional status in the United Kingdom, 1750–1980. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Forbes, T. R. (1972). Mortality books for 1820 to 1849 from the Parish of St. Bride, Fleet Street, London. Journal of the History of Medicine, 27(1), 15–29.Google Scholar
  50. Fujita, M., Lo, Y. J., & Brindle, E. (2017). Nutritional, inflammatory, and ecological correlates of maternal retinol allocation to breast milk in agro-pastoral Ariaal communities of northern Kenya. American Journal of Human Biology, 29(4), 1–14.Google Scholar
  51. García, A. R., Gurven, M., & Blackwell, A. D. (2017). A matter of perception: Perceived socio-economic status and cortisol on the island of Utila, Honduras. American Journal of Human Biology, 29(5), 1–16.CrossRefGoogle Scholar
  52. Glover, V. (2015). Prenatal stress and its effects on the fetus and the child: Possible underlying biological mechanisms. In M. C. Antonelli (Ed.), Perinatal programming of neurodevelopment (Vol. 10, pp. 269–283). New York: Springer.CrossRefGoogle Scholar
  53. Gluckman, P. D., & Hanson, M. A. (2005). The fetal matrix: Evolution, development and disease. Cambridge: Cambridge University Press.Google Scholar
  54. Goodman, A. H., & Armelagos, G. J. (1988). Childhood stress and decreased longevity in a prehistoric population. American Anthropologist, 90(4), 936–944.CrossRefGoogle Scholar
  55. Goodman, A. H., & Armelagos, G. J. (1989). Infant and childhood morbidity and mortality risks in archaeological populations. World Archaeology, 21(2), 225–243.CrossRefGoogle Scholar
  56. Goodman, A. H., & Martin, D. L. (2002). Reconstructing health profiles from skeletal remains. In R. H. Steckel & J. C. Rose (Eds.), The backbone of history: Health and nutrition in the Western Hemisphere (pp. 11–60). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  57. Goodman, A. H., Thomas, R. B., Swedlund, A. C., & Armelagos, G. J. (1988). Biocultural perspectives on stress in prehistoric, historical, and contemporary population research. Yearbook of Physical Anthropology, 31(S9), 169–202.CrossRefGoogle Scholar
  58. Gowland, R. L. (2015). Entangled lives: Implications of the developmental origins of health and disease hypothesis for bioarchaeology and the life course. American Journal of Physical Anthropology, 158(4), 530–540.CrossRefGoogle Scholar
  59. Gustafson, G., & Koch, G. (1974). Age estimation up to 16 years of age based on dental development. Odontologisk Revy, 25(3), 297–306.Google Scholar
  60. Hahn, P. (1972). Lipid metabolism and nutrition in the prenatal and postnatal periods. In M. Winick (Ed.), Nutrition and development (pp. 99–134). London: Wiley.Google Scholar
  61. Halcrow, S. E., & Tayles, N. (2008). The bioarchaeological investigation of childhood and social age: Problems and prospects. Journal of Archaeological Method and Theory, 15(2), 190–215.CrossRefGoogle Scholar
  62. Halcrow, S. E., & Ward, S. M. (2017). Bioarchaeology of childhood. In H. Montgomery (Ed.), Oxford bibliographies in childhood studies. New York: Oxford University Press.Google Scholar
  63. Halcrow, S. E., Tayles, N., & Elliot, G. E. (2017). The bioarchaeology of fetuses. In S. Han, T. K. Betsinger, & A. B. Scott (Eds.), The anthropology of the fetus (pp. 83–111). New York: Berghahn Books.Google Scholar
  64. Halfon, N., Larson, K., Lu, M., Tullis, E., & Russ, S. (2014). Lifecourse health development: Past, present and future. Maternal and Child Health Journal, 18(2), 344–365.CrossRefGoogle Scholar
  65. Harding, V. (2002). The dead and the living in Paris and London: 1500–1670. Cambridge: Cambridge University Press.Google Scholar
  66. Helfrecht, C., Hagen, E. H., DeAvila, D., Bernstein, R. M., Dira, S. J., & Meehan, C. L. (2017). DHEAS patterning across childhood in three sub-Saharan populations: Associations with age, sex, ethnicity, and cortisol. American Journal of Human Biology, 30(2), 1–17.Google Scholar
  67. Heuzé, Y., & Cardoso, H. F. V. (2008). Testing the quality of nonadult Bayesian dental age assessment methods to juvenile skeletal remains: The Lisbon collection children and secular trend effects. American Journal of Physical Anthropology, 135(3), 275–283.CrossRefGoogle Scholar
  68. Hillson, S. W. (2005). Teeth. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  69. Holdsworth, E. A., & Schell, L. M. (2017). Maternal-infant interaction as an influence on infant adiposity. American Journal of Human Biology, 29(5), 1–18.CrossRefGoogle Scholar
  70. Holland Jones, J. (2005). Fetal programming: Adaptive life-history tactics or making the best of a bad start? American Journal of Human Biology, 17(1), 22–33.CrossRefGoogle Scholar
  71. Hoppa, R. D., & Fitzgerald, C. M. (1999). From head to toe: Integrating studies from bones and teeth in biological anthropology. In D. Hoppa & C. M. Fitzgerald (Eds.), Human growth in the past: Studies from bones and teeth (pp. 1–32). Cambridge: Cambridge University Press.Google Scholar
  72. Humphrey, L. (2000a). Interpretations of the growth of past populations. In J. S. Derevenski (Ed.), Children and material culture (pp. 193–205). London: Routledge.Google Scholar
  73. Humphrey, L. (2000b). Growth studies of past population: An overview and an example. In M. Cox & S. Mays (Eds.), Human osteology in archaeology and forensic science (pp. 23–38). London: Greenwich Medical Media Ltd..Google Scholar
  74. Innes, A. M., Seshia, M. M., Prasad, C., Al Saif, S., Friesen, F. R., Chudley, A. E., Reed, M., Dilling, L. A., Haworth, J. C., & Greenberg, C. R. (2002). Congenital rickets caused by maternal vitamin D deficiency. Paediatric & Child Health, 7(7), 455–458.CrossRefGoogle Scholar
  75. Ives, R., & Humphrey, L. (2017). Patterns of long bone growth in a mid-19th century documented sample of the urban poor from Bethnal Green, London, UK. American Journal of Physical Anthropology, 163(1), 173–186.CrossRefGoogle Scholar
  76. Jones, H. (1991). Preliminary report of archaeological excavations at New London Bridge House, London Bridge Street, S.E.1. London: Museum of London, Department of Great London Archaeology. (Unpublished).Google Scholar
  77. Kamp, K. A. (2015). Children and their childhoods: Retrospectives and prospectives. Childhood in the Past, 8(2), 161–169.CrossRefGoogle Scholar
  78. Karsenty, G., & Kronenberg, H. M. (2003). Postnatal bone growth: Growth plate biology, modelling, and remodeling. In F. H. Glorieux, J. M. Pettiforand, & H. Jüppner (Eds.), Pediatric bone: Biology and diseases (pp. 119–133). London: Academic Press.CrossRefGoogle Scholar
  79. Kuzawa, C. W. (2012). Early environments, developmental plasticity, and chronic degenerative disease. In N. Cameron & B. Bogin (Eds.), Human growth and development (pp. 325–341). London: Elsevier.CrossRefGoogle Scholar
  80. Kuzawa, C. W., & Quinn, E. A. (2009). Developmental origins of adult function and health: Evolutionary hypotheses. Annual Review of Anthropology, 38, 131–147.CrossRefGoogle Scholar
  81. Kuzawa, C. W., & Sweet, E. (2009). Epigenetics and the embodiment of race: Developmental origins of US racial disparities in cardiovascular health. American Journal of Human Biology, 21(1), 2–15.CrossRefGoogle Scholar
  82. Kuzawa, C. W., Chugani, H. T., Grossman, L. L., Lipovich, L., Muzik, O., Hof, P. R., Wildman, D. E., Sherwood, C. C., Leonard, W. R., & Lange, N. (2014). Metabolic costs and evolutionary implications of human brain development. Proceedings of the National Academy of Sciences, 111(36), 13010–13015.CrossRefGoogle Scholar
  83. Lejarraga, H. (2012). Growth in infancy and childhood: A pediatric approach. In N. Cameron & B. Bogin (Eds.), Human growth and development (pp. 23–56). London: Elsevier.CrossRefGoogle Scholar
  84. Lewis, M. E. (2002a). The impact of industrialisation: Comparative study of child health in four sites from medieval and post-medieval England (AD 850–1859). American Journal of Physical Anthropology, 119(3), 211–223.CrossRefGoogle Scholar
  85. Lewis, M. E. (2002b). Urbanisation and child health in medieval and post-medieval England (British archaeological reports British series 229). Oxford: Archaeopress.Google Scholar
  86. Lewis, M. E. (2007). The bioarchaeology of children: Perspectives from biological and forensic anthropology. Cambridge: Cambridge University Press.Google Scholar
  87. Lewis, M. E. (2017a). Paleopathology of children: Identification of pathological conditions in the human skeletal remains of non-adults. London: Academic Press.Google Scholar
  88. Lewis, M. E. (2017b). Childcare in the past: The contribution of Palaeopathology. In L. Powell, W. Southwell-Wright, & R. Gowland (Eds.), Care in the past: Archaeological and interdisciplinary perspectives (pp. 23–37). Oxford: Oxbow Books.Google Scholar
  89. Lewis, M. E. (2018). Fetal paleopathology: An impossible discipline? In S. Han, T. K. Betsinger, & A. B. Scott (Eds.), The anthropology of the fetus (pp. 112–131). New York: Berghahn Books.Google Scholar
  90. Lewis, M. E., & Gowland, R. L. (2007). Brief and precarious lives: Infant mortality in contrasting sites from medieval and post-medieval England (AD 850-1859). American Journal of Physical Anthropology, 134(1), 117–129.CrossRefGoogle Scholar
  91. Lewis, M. E., & Roberts, C. (1997). Growing pains: The interpretation of stress indicators. International Journal of Osteoarchaeology, 7(6), 581–586.CrossRefGoogle Scholar
  92. Lindert, P. (1994). Unequal living standards. In R. Floud & D. McCloskey (Eds.), The economic history of Britain since 1700 (pp. 357–386). Cambridge: Cambridge University Press.Google Scholar
  93. Liversidge, H. M., & Molleson, T. (2004). Variation in crown and root formation and eruption of human deciduous teeth. American Journal of Physical Anthropology, 123(2), 172–180.CrossRefGoogle Scholar
  94. Luo, Z. C., Fraser, W. D., Julien, P., Deal, C. L., Audibert, F., Smith, G. N., Xiong, X., & Walker, M. (2006). Tracing the origins of ‘fetal origins’ of adult diseases: Programming by oxidative stress? Medical Hypotheses, 66(1), 38–44.CrossRefGoogle Scholar
  95. Luo, Z. C., Xiao, L., & Nuyt, A. M. (2010). Mechanisms of developmental programming of the metabolic syndrome and related disorders. World Journal of Diabetes, 1(3), 89–98.Google Scholar
  96. Marmot, M. (2005). Social determinants of health inequalities. Lancet, 365(9564), 1099–1104.CrossRefGoogle Scholar
  97. Martorell, R., & Habicht, J. P. (1986). Growth in early childhood in developing countries. In F. Falkner & J. Tanner (Eds.), Human Growth: methodology ecological, genetic, and nutritional effects on growth (pp. 241–262). New York: Plenum Press.CrossRefGoogle Scholar
  98. Massler, M., Schour, I., & Poncher, H. G. (1941). Developmental pattern of the child as reflected in the calcification pattern of the teeth. American Journal of Diseases of Children, 62(1), 33–67.Google Scholar
  99. Mays, S. (2014). The palaeopathology of scurvy in Europe. International Journal of Paleopathology, 5, 55–62.CrossRefGoogle Scholar
  100. Mays, S., Ives, R., & Brickley, M. (2009). The effects of socioeconomic status on endochondral and appositional bone growth, and acquisition of cortical bone in children from 19th century Birmingham, England. American Journal of Physical Anthropology, 140(3), 410–416.CrossRefGoogle Scholar
  101. Mays, S., Gowland, R., Halcrow, S., & Murphy, E. (2017). Child bioarchaeology: Perspectives on the past 10 years. Childhood in the Past, 10(1), 38–56.CrossRefGoogle Scholar
  102. McDade, T. W., Reyes-García, V., Tanner, S., Huanca, T., & Leonard, W. R. (2008). Maintenance versus growth: Investigating the costs of immune activation among children in lowland Bolivia. American Journal of Physical Anthropology, 136(4), 478–484.CrossRefGoogle Scholar
  103. Miles, A. & Conheeney, J. (2005). A post-medieval population from London: Excavations in the St Bride’s Lower Churchyard 75-82 Farringdon Street, City of London. London (Unpublished).Google Scholar
  104. Moorrees, C. F. A., Fanning, E. A., & Hunt, E. E. (1963a). Formation and resorption of three deciduous teeth in children. American Journal of Physical Anthropology, 21(2), 205–213.CrossRefGoogle Scholar
  105. Moorrees, C. F. A., Fanning, E. A., & Hunt, E. E. (1963b). Age variation of formation stages for ten permanent teeth. Journal of Dental Research, 42(6), 1490–1502.CrossRefGoogle Scholar
  106. Mortier, G. R., & Vanden Berghe, W. (2012). Genomics, epigenetics and growth. In N. Cameron & B. Bogin (Eds.), Human growth and development (pp. 153–172). London: Elsevier.CrossRefGoogle Scholar
  107. Newman, S. L., & Gowland, R. L. (2017). Dedicated followers of fashion? Bioarchaeological perspectives on socio-economic status, inequality, and health in urban children from the industrial revolution (18th-19th century) England. International Journal of Osteoarchaeology, 27(2), 217–229.CrossRefGoogle Scholar
  108. Nicholas, S., & Steckel, R. H. (1991). Heights and living standards of English workers during the early years of industrialization, 1770–1815. Journal of Economic History, 51(4), 937–957.CrossRefGoogle Scholar
  109. Nitsch, E. K., Humphrey, L. T., & Hedges, R. E. M. (2011). Using stable isotope analysis to examine the effect of economic change on breastfeeding practices in Spitalfields, London, UK. American Journal of Physical Anthropology, 146(4), 619–628.CrossRefGoogle Scholar
  110. Oestreich, A. E. (2008). Growth of the pediatric skeleton: A primer for radiologists. New York: Springer.Google Scholar
  111. Ogden, A. R., Pinhasi, R., & White, W. J. (2007). Gross enamel hypoplasia in molars from subadults in a 16th-18th century London graveyard. American Journal of Physical Anthropology, 133(3), 957–966.CrossRefGoogle Scholar
  112. Oxford University News. (2014). Babies born to health mums are strikingly similar in size worldwide. Accessed Aug 2018.
  113. Perry, M. A. (2006). Redefining childhood through bioarchaeology: Toward an archaeological and biological understanding of children in Antiquity. Archaeological Papers of the American Anthropological Association, 15(1), 89–111.CrossRefGoogle Scholar
  114. Phelan, J. C., Link, B. G., & Tehranifar, P. (2010). Social conditions as fundamental causes of health inequalities: Theory, evidence, and policy implications. Journal of Health and Social Behaviour, 51, S28–S40.CrossRefGoogle Scholar
  115. Pinhasi, R., Shaw, P., White, B., & Ogden, A. R. (2006). Morbidity, rickets and long-bone growth in post-medieval Britain - a cross-population analysis. Annals of Human Biology, 33(3), 372–398.CrossRefGoogle Scholar
  116. Pomeroy, E., Stock, J. T., Stanojevic, S., Miranda, J. J., Cole, T. J., & Wells, J. C. K. (2012). Trade-offs in relative limb length among Peruvian children: Extending the thrifty phenotype hypothesis to limb proportions. PloS One, 7(12), 1–10.CrossRefGoogle Scholar
  117. Redfern, R. (2003). Sex and the City: A biocultural investigation into female health in Roman Britain. In G. Carr, E. Swift, & J. Weekes (Eds.), TRAC 2002 Proceedings of the twelfth annual theoretical Roman archaeology conference. Oxford: Oxbow Books.Google Scholar
  118. Reitsema, L. J., & McIlvaine, B. K. (2014). Reconciling “stress” and “health” in physical anthropology: What can bioarchaeologists learn from the other subdisciplines? American Journal of Physical Anthropology, 155(2), 181–185.CrossRefGoogle Scholar
  119. Richardson, S. S., Daniels, C. R., Gillman, M. W., Golden, J., Kukla, R., Kuzawa, C., & Rich-Edwards, J. (2014, August 13th). Society: Don’t blame the mothers. Nature News.Google Scholar
  120. Robb, J., Bigazzi, R., Lazzarini, L., Scarsini, C., & Sonego, F. (2001). Social ‘status’ and biological ‘status’: A comparison of grave goods and skeletal indicators from Pontecagnano. American Journal of Physical Anthropology, 115(3), 213–222.CrossRefGoogle Scholar
  121. Robertson, T., Batty, G. D., Der, G., Fenton, C., Shiels, P. G., & Benzeval, M. (2013). Is socioeconomic status associated with biological aging as measured by Telomere Length? Epidemiologic Review, 35, 98–111.CrossRefGoogle Scholar
  122. Rogers, A. (1997). Vulnerability, health and healthcare. Journal of Advanced Nursing, 26(1), 65–72.CrossRefGoogle Scholar
  123. Said-Mohamed, R., Pettifor, J. M., & Norris, S. A. (2018). Life History theory hypotheses on child growth: Potential implications for short and long-term child growth, development and health. American Journal of Physical Anthropology, 165(1), 4–19.CrossRefGoogle Scholar
  124. Sánchez Romero, M. (2017). Landscapes of childhood: Bodies, places and material culture. Childhood in the Past, 10(1), 16–37.CrossRefGoogle Scholar
  125. Sandman, C. A., Glynn, L. M., & Davis, E. P. (2016). Neurobehavioral consequences of fetal exposure to gestational stress. In N. Reisslandand & B. S. Kisilevsky (Eds.), Fetal development (pp. 29–265). Switzerland: Springer International Publishing.Google Scholar
  126. Satterlee Blake, K. A. (2018). The biology of the fetal period: Interpreting life from fetal skeletal remains. In S. Han, T. K. Betsinger, & A. B. Scott (Eds.), The anthropology of the fetus (pp. 34–58). New York: Berghahn Books.Google Scholar
  127. Saunders, S. R., & Hoppa, R. D. (1993). Growth deficit in survivors and non-survivors: Biological mortality bias in subadult skeletal samples. Yearbook of Physical Anthropology, 36(S17), 127–151.CrossRefGoogle Scholar
  128. Schell, L. M. (1997). Culture as a stressor: A revised model of biocultural interaction. American Journal of Physical Anthropology, 102(1), 67–77.CrossRefGoogle Scholar
  129. Scheuer, L., & Black, S. (2000a). Developmental juvenile osteology. London: Academic Press.Google Scholar
  130. Scheuer, L., & Black, S. (2000b). Development and ageing of the juvenile skeleton. In M. Cox & S. Mays (Eds.), Human osteology in archaeology and forensic science (pp. 9–21). London: Greenwich Medical Media Ltd..Google Scholar
  131. Scheuer, L., Musgrave, J. H., & Evans, S. P. (1980). The estimation of late fetal and perinatal age from limb bone length by linear and logarithmic regression. Annals of Human Biology, 7(3), 257–265.CrossRefGoogle Scholar
  132. Schofield, J., & Maloney, C. (1998). Archaeology in the City of London, 1907–1991: A guide to records of excavations by the Museum of London and its predecessors. London: Museum of London.Google Scholar
  133. Sinclair, D. (1985). Human growth after birth. Oxford: Oxford University Press.Google Scholar
  134. Slack, J. M. W. (1991). From egg to embryon: Regional specification in early development. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  135. Snoddy, A. M. E., Buckley, H. R., Elliott, G. E., Standen, V. G., Arriaza, B. T., & Halcrow, S. E. (2018). Macroscopic features of scurvy in human skeletal remains: A literature synthesis and diagnostic guide. American Journal of Physical Anthropology, 167(4), 876–895.CrossRefGoogle Scholar
  136. Steckel, R. H. (2009). Heights and human welfare: Recent developments and new directions. Explorations in Economic History, 46, 1–23.CrossRefGoogle Scholar
  137. Stinson, S. (2000). Growth variation: Biological and cultural factors. In S. Stinson, B. Bogin, R. Huss-Ashmore, & D. H. O’Rourke (Eds.), Human biology: An evolutionary and biocultural perspective (pp. 434–438). New York: Wiley-Liss.Google Scholar
  138. Storey, R. (1992). Preindustrial urban lifestyle and health. MASCA Research Papers in Science and Archaeology, 9, 33–41.Google Scholar
  139. Tanner, J. M. (1978). Foetus into man: Physical growth from conception to maturity. London: Open Books Publishing Ltd..Google Scholar
  140. Thorsell, A., & Nätt, D. (2016). Maternal stress and diet may influence affective behaviour and stress-response in offspring via epigenetic regulation of central peptidergic function. Environmental Epigenetics, 2(3), 1–10.CrossRefGoogle Scholar
  141. Utczas, K., Muzsnai, A., Cameron, N., Zsakai, A., & Bodzsar, E. B. (2017). A comparison of skeletal maturity assessed by radiological and ultrasonic methods. American Journal of Human Biology, 29(4), 1–7.Google Scholar
  142. Wadhwa, P. D., Entringer, S., Buss, C., & Lu, M. C. (2011). The contribution of maternal stress to preterm birth: Issues and considerations. Clinics in Perinatology, 38(3), 351–384.CrossRefGoogle Scholar
  143. Wilkie, L. A. (2013). Expelling frogs and binding babies: Conception, gestation and birth in nineteenth-century African-American midwifery. World Archaeology, 45(2), 272–284.CrossRefGoogle Scholar
  144. Winick, M., Brasel, J. A., & Rosso, P. (1972). Nutrition and cell growth. In M. Winick (Ed.), Nutrition and development (pp. 49–98). London: John Wiley & Sons.Google Scholar
  145. World Health Organization. (2018). Global Health Observatory (GHO) data; Infant Mortality. Accessed Aug 2018.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ArchaeologyDurham UniversityDurhamUK

Personalised recommendations