Using Bone Histology to Identify Stillborn Infants in the Archaeological Record

  • Thomas J. BoothEmail author
Part of the Bioarchaeology and Social Theory book series (BST)


Various osteological techniques can be used to assess the developmental age of an infant skeleton, but it is more difficult to discern whether an infant had died before or after birth. Histological analysis of bone microstructure to look for microbial tunnelling (bioerosion) by putrefactive gut bacteria may represent a novel method of determining whether an archaeological infant had been a live birth. Gut bacteria spread around the body in the days following death and are primarily responsible for the putrefactive stage of decomposition. Most archaeological human bones that have been looked at using this method have been extensively bioeroded by bacteria. However, around half of archaeological young infant human skeletons remain free from bacterial tunnelling. The infant gut microbiome is thought to develop soon after birth and the best explanation for the large proportion of unbioeroded archaeological young infant skeletons is that they represent the remains of stillborn and short-lived infants that had not yet developed their bioerosive gut bacteria. The ability to identify stillborn and short-lived infant skeletons in the archaeological record has useful applications to the study of demography, health and social belief towards infancy and the beginnings of life in past populations. This chapter will discuss the use of histological analyses of bone diagenesis to identify stillborn infants in the archaeological record and demonstrate how this method may be applied to specific archaeological questions.


Stillborn infants Bone diagenesis Bioerosion Microscopy 


  1. Aagard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., & Versalovic, J. (2014). The placenta harbours a unique microbiome. Science Translational Medicine, 6(237), 237–265.CrossRefGoogle Scholar
  2. Ardissone, A. N., de la Cruz, D. M., Davis-Richardson, A. G., Rechcigl, K. T., Li, N., Drew, J. C., Murgas-Torrazza, R., Sharma, R., Hudak, M. L., Triplet, E. W., & Neu, J. (2014). Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One, 9(6), e101399.CrossRefGoogle Scholar
  3. Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., & Khan, M. T. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host & Microbe, 17(5), 690–703.CrossRefGoogle Scholar
  4. Balzer, A., Gleixner, G., Grupe, G., Schmidt, H. L., Schramm, S., & Turban-Just, S. (1997). In vitro decomposition of bone collagen by soil bacteria: The implications for stable isotope analysis in archaeometry. Archaeometry, 39(2), 415–429.CrossRefGoogle Scholar
  5. Bell, L. S., & Elkerton, A. (2008). Unique marine taphonomy in human skeletal material recovered from the Medieval warship Mary Rose. International Journal of Osteoarchaeology, 18(5), 523–535.CrossRefGoogle Scholar
  6. Bell, L. S., Skinner, M. F., & Jones, S. J. (1996). The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Science International, 82(2), 129–140.CrossRefGoogle Scholar
  7. Bello, S. M., Thomann, A., Signoli, M., Dutour, O., & Andrew, P. (2006). Age and sex bias in the reconstruction of past population structures. American Journal of Physical Anthropology, 129(1), 24–38.CrossRefGoogle Scholar
  8. Booth, T. J. (2014). An Investigation into the relationship between bone diagenesis and funerary treatment. University of Sheffield, PhD Thesis.Google Scholar
  9. Booth, T. J. (2016). An investigation into the relationship between bacterial bioerosion and funerary treatment in European archaeological human bone. Archaeometry, 58(3), 484–499.CrossRefGoogle Scholar
  10. Booth, T. J., Redfern, R. C., & Gowland, R. L. (2016). Immaculate conceptions: Micro-CT analysis of diagenesis in Romano-British infant skeletons. Journal of Archaeological Science, 74, 124–134.CrossRefGoogle Scholar
  11. Buckberry, J. (2000). Missing, presumed buried? Bone diagenesis and underrepresentation of Anglo-Saxon children. Assemblage 5.Google Scholar
  12. Chamberlain, A.T. (1999). Carsington Pasture Cave, Brassington, Derbyshire: A prehistoric burial site. CAPRA 1.Google Scholar
  13. Chamberlain, A.T. (2001). Radiocarbon dates from Carsington Pasture Cave, Brassington, Derbyshire. CAPRA 3.Google Scholar
  14. Child, A. M. (1995). Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science, 22(2), 165–174.CrossRefGoogle Scholar
  15. Child, A. M., Gillard, R. D., & Pollard, A. M. (1993). Microbially-induced promotion of amino acid racemization in bone: Isolation of the microorganisms and the detection of their enzymes. Journal of Archaeological Science, 20(2), 159–168.CrossRefGoogle Scholar
  16. Collins, M. J., Penkman, K. E., Rohland, N., Shapiro, B., Dobberstein, R. C., Ritz-Timme, S., & Hofreiter, M. (2009). Is amino acid racemization a useful tool for screening for ancient DNA in bone? Proceedings of the Royal Society of London B: Biological Sciences, 276(1669), 2971–2977.CrossRefGoogle Scholar
  17. Dal Sasso, G., Maritan, L., Usai, D., Angelini, I., & Artioli, G. (2014). Bone diagenesis at the micro-scale: Bone alteration patterns during multiple burial phases at Al Khiday (Khartoum, Sudan) between the Early Holocene and the II century AD. Palaeogeography, Palaeoclimatology, Paleoecology, 416, 30–42.CrossRefGoogle Scholar
  18. Dominiguez-Bello, M. G., De Jesus-Laboy, K. M., Shen, N., Cox, L. M., Amir, A., Gonzalez, A., Bokulich, N. A., Jin Song, S., Hoashi, M., Rivera-Vinas, J. I., Mendez, K., Knight, R., & Clemente, J. C. (2016). Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nature Medicine, 22(3), 251–254.Google Scholar
  19. Economou, C. (2003). Behind the north wall of sleep. Microbial degradation of foetal and neonatal bone, with a case study from Bolsover. University of Sheffield, Unpublished MSc Dissertation.Google Scholar
  20. Fazekas, I. G., & Kosa, F. (1978). Forensic fetal osteology. Budapest: Akademiai Kiado.Google Scholar
  21. Fernández-Jalvo, Y., Andrews, P., Pesquero, D., Smith, C., Marín-Monfort, D., Sánchez, B., Geigl, E.-M., & Alonso, A. (2010). Early bone diagenesis in temperate environments Part I: Surface features and histology. Palaeogeography, Palaeoclimatology, Paleoecology, 288, 62–81.CrossRefGoogle Scholar
  22. Ferretti, P., Pasolli, E., Tett, A., Asnicar, F., Gorfer, V., Fedi, S., Armanini, F., Truong, D. T., Manara, S., Zolfo, M., & Beghini, F. (2018). Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host & Microbe, 24(1), 133–145.CrossRefGoogle Scholar
  23. Foster, P. (1992). Excavations at the Parish Church of St. Mary & St. Lawrence. Bolsover: Creswell Heritage Trust Report.Google Scholar
  24. Gill-King, H. (1997). Chemical and ultrastructural aspects of decomposition. In W. D. Haglund & M. H. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 93–108). Boca Raton: CRC Press.Google Scholar
  25. Gill-Robinson, H. (1999). People and piglets: Peat and preservation. In B. Coles, J. Coles, & S. Jørgensen (Eds.), Bog bodies, sacred sites and wetland archaeology (pp. 99–102). Exeter: WARP.Google Scholar
  26. Gilmore, H. F., & Halcrow, S. E. (2014). Sense or sensationalism? Approaches to explaining high perinatal mortality in the past. In J. L. Thompson (Ed.), Tracing childhood: Bioarchaeological investigations of early lives in antiquity (pp. 123–138). Gainesville: University of Florida Press.CrossRefGoogle Scholar
  27. Gowland, R. L. (2015). Entangled lives: Implications of the developmental origins of health and disease hypothesis for bioarchaeology and the life course. American Journal of Physical Anthropology, 158(4), 530–540.CrossRefGoogle Scholar
  28. Gowland, R. L., & Chamberlain, A. T. (2002). A Bayesian approach to ageing perinatal skeletal material from archaeological sites: Implications for the evidence for infanticide in Roman Britain. Journal of Archaeological Science, 29, 677–685.CrossRefGoogle Scholar
  29. Gowland, R. L., Chamberlain, A. T., & Redfern, R. C. (2014). On the brink of being: Re-evaluating infant death and infanticide in Roman Britain. In M. Carroll & E.-J. Graham (Eds.), Infant Health and Death in Roman Italy and Beyond (pp. 69–88). Journal of Roman Archaeology Supplementary Series 98.). Ann Arbor: Journal of Roman Archaeology.Google Scholar
  30. Groer, M. W., Luciano, A. A., Dishaw, L. J., Ashmeade, T. L., Miller, E., & Gilbert, J. A. (2014). Development of the preterm infant gut microbiome: A research priority. Microbiome, 2, 38.CrossRefGoogle Scholar
  31. Grupe, G., & Dreses-Werringloer, U. (1993). Decomposition phenomena in thin-sections of excavated human bones. In G. Grupe & A. N. Garland (Eds.), Histology of ancient human bone: Methods and diagnosis (pp. 27–36). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  32. Grupe, G., & Piepenbrink, H. (1989). Impact of microbial activity on trace element concentrations in excavated bones. Applied Geochemistry, 4(3), 293–298.CrossRefGoogle Scholar
  33. Guy, H., Masset, C., & Baud, C.-A. (1997). Infant taphonomy. International Journal of Osteoarchaeology, 7(3), 224–229.CrossRefGoogle Scholar
  34. Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in exhumed human bones. Medicine, Science, and the Law, 21(4), 243–266.CrossRefGoogle Scholar
  35. Halcrow, S. E., Tayles, N., & Livingstone, V. (2008). Infant death in late prehistoric Southeast Asia. Asian Perspectives, 47(2), 371–404.CrossRefGoogle Scholar
  36. Hall, A. H., Sherlock, E., & Sykes, D. (2014). Does micro-CT scanning damage DNA in museum specimens? Journal of Natural Science Collections, 2, 22–28.Google Scholar
  37. Hanson, D. B., & Buikstra, J. E. (1987). Histomorphological alteration in buried human bone from the lower Illinois Valley: Implications for palaeodietary research. Journal of Archaeological Science, 14(5), 549–563.CrossRefGoogle Scholar
  38. Haynes, S., Searle, J. B., Bretman, A., & Dobney, K. M. (2002). Bone preservation and ancient DNA: The application of screening methods for predicting DNA survival. Journal of Archaeological Science, 29(6), 585–592.CrossRefGoogle Scholar
  39. Hedges, R. E. M. (2002). Bone diagenesis: An overview of processes. Archaeometry, 44(3), 319–328.CrossRefGoogle Scholar
  40. Hedges, R. E. M., Millard, A. R., & Pike, A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science, 22(2), 201–209.CrossRefGoogle Scholar
  41. Hollund, H. I., Jans, M. M. E., Collins, M. J., Kars, H., Joosten, I., & Kars, S. M. (2012). What happened here? Bone histology as a tool in decoding the postmortem histories of archaeological bone from Castricum, The Netherlands. International Journal of Osteoarchaeology, 22(5), 537–548.CrossRefGoogle Scholar
  42. Hollund, H. I., Arts, N., Jans, M. M. E., & Kars, H. (2015). Are teeth better? Histological characterisation of diagenesis in archaeological bone – tooth pairs and a discussion of the consequences for archaeometric sample selection and analyses. International Journal of Osteoarchaeology, 25(6), 901–911.CrossRefGoogle Scholar
  43. Immel, A., Le Cabec, A., Bonazzi, M., Herbig, A., Temming, H., Schuenemann, V. J., Bos, K. I., Langbein, F., Harvati, K., Bridault, A., Pion, G., Julien, M.-A., Krotova, O., Conard, N. J., Muenzel, S. C., Drucker, D. G., Viola, B., Hublin, J.-J., Tafforeau, P., & Krause, J. (2016). Effect of x-ray irradiation on ancient DNA in sub-fossil bones – Guidelines for safe x-ray imaging. Scientific Reports, 6, 32969.CrossRefGoogle Scholar
  44. Jakobsson, H. E., Abrahamsson, T. R., Jenmalm, M. C., Harris, K., Quince, C., Jernberg, C., Björkstén, B., Engstrand, L., & Andersson, A. F. (2014). Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut, 63(4), 599–566.CrossRefGoogle Scholar
  45. Janaway, R. C. (1996). The decay of buried human remains and their associated material. In J. Hunter, C. Roberts, & A. Martin (Eds.), Studies in crime: An introduction to forensic archaeology (pp. 58–85). London: Routledge.Google Scholar
  46. Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J., & Kars, H. (2004). Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 31(1), 87–95.CrossRefGoogle Scholar
  47. Jackes, M., Sherburne, R., Lubell, D., Barker, C., & Wayman, M. (2001). Destruction of microstructure in archaeological bone: A case study from Portugal. International Journal of Osteoarchaeology, 11(6), 415–432.CrossRefGoogle Scholar
  48. Jiménez, E., Marin, M. L., Martin, R., Ordriozola, J. M., Olivares, M., Xaus, J., Fernández, L., & Rodriguez, J. M. (2008). Is meconium from healthy newborns actually sterile? Research in Microbiology, 159(3), 187–193.CrossRefGoogle Scholar
  49. Keal, L.L. (2005). Osteological analysis of the inhumed and disarticulated remains from Bantycock gypsum mine, Nottinghamshire: Unpublished Pre-Construct Archaeology Report.Google Scholar
  50. Kendall, C., Eriksen, A. M. H., Kontopoulos, I., Collins, M. J., & Turner-Walker, G. (2018). Diagenesis of archaeological bone and tooth. Palaeogeography, Palaeoclimatology, Palaeoecology, 491, 21–37.CrossRefGoogle Scholar
  51. Kerr, N. (1994). Report of human remains from Bolsover. Derbyshire: University of Sheffield Unpublished Certificate of Archaeology Dissertation.Google Scholar
  52. Kontopoulos, I., Nystrom, P., & White, L. (2016). Experimental taphonomy: Post-mortem microstructural modifications in Sus scrofa domesticus bone. Forensic Science International, 266, 320–328.CrossRefGoogle Scholar
  53. Lee-Thorp, J. A., & Sealy, J. C. (2008). Beyond documenting diagenesis: The fifth international bone diagenesis workshop. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 129–133.CrossRefGoogle Scholar
  54. Lewis, M. E., & Gowland, R. L. (2007). Brief and precarious lives: Infant mortality in contrasting sites from medieval and post-medieval England (AD 850-1859). American Journal of Physical Anthropology, 134(1), 117–129.CrossRefGoogle Scholar
  55. Macchiarelli, R., Bondioli, L., Debénath, A., Mazurier, A., Tournepiche, J.-F., Birch, W., & Dean, C. (2006). How Neanderthal molar teeth grew. Nature, 444, 748–751.CrossRefGoogle Scholar
  56. Mackie, R. I., Sghir, A., & Gaskins, H. R. (1999). Developmental microbial ecology of the neonatal gastrointestinal tract. The American Journal of Clinical Nutrition, 69(S5), 1035–1045.CrossRefGoogle Scholar
  57. Marchiafava, V., Bonucci, E., & Ascenzi, A. (1974). Fungal osteoclasia: A model of dead bone resorption. Calcified Tissue Research, 14(1), 195–210.CrossRefGoogle Scholar
  58. Maat, G.J., Van Den Bos, R.P. and Aarents, M.J., 2001. Manual preparation of ground sections for the microscopy of natural bone tissue: update and modification of Frost’s ‘rapid manual method’. International Journal of Osteoarchaeology, 11(5), 366–374.CrossRefGoogle Scholar
  59. Matamoros, S., Gras-Leguen, C., Le Vacon, F., Potel, G., & de La Cochetiere, M.-F. (2013). Development of intestinal microbiota in infants and its impact on health. Trends in Microbiology, 21(4), 167–173.CrossRefGoogle Scholar
  60. Mays, S. (1993). Infanticide in Roman Britain. Antiquity, 67(257), 883–888.CrossRefGoogle Scholar
  61. Morse, J. M., Jehle, C., & Gamble, D. (1990). Initiating breastfeeding: A world survey of the timing of postpartum breastfeeding. International Journal of Nursing Studies, 27(3), 303–313.CrossRefGoogle Scholar
  62. Mueller, N. T., Bakacs, E., Combellick, J., Grigoryan, Z., & Dominguez-Bello, M. G. (2015). The infant microbiome development: Mom matters. Trends in Molecular Medicine, 21(2), 109–117.CrossRefGoogle Scholar
  63. Murphy, E. M. (2008). Deviant burial in the archaeological record. Oxford: Oxbow.Google Scholar
  64. Nicholson, R. A. (1996). Bone degradation, burial medium and species representation: Debunking the myths, an experimental-based approach. Journal of Archaeological Science, 23(4), 513–533.CrossRefGoogle Scholar
  65. Nielsen-Marsh, C. M., Smith, C. I., Jans, M. M. E., Nord, A., Kars, H., & Collins, M. J. (2007). Bone diagenesis in the European Holocene II: Taphonomic and environmental considerations. Journal of Archaeological Science, 34(9), 1523–1531.CrossRefGoogle Scholar
  66. Ottoni, C., Koon, H. E., Collins, M. J., Penkman, K. E., Rickards, O., & Craig, O. E. (2009). Preservation of ancient DNA in thermally damaged archaeological bone. Naturwissenschaften, 96(2), 267–278.CrossRefGoogle Scholar
  67. Pesquero, M. D., Ascaso, C., Alcalá, L., & Fernández-Jalvo, Y. (2010). A new taphonomic bioerosion in a Miocene lakeshore environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 192–198.CrossRefGoogle Scholar
  68. Polson, C. J., Gee, D. J., & Knight, B. (1985). The essentials of forensic medicine. Oxford: Pergamon Press.Google Scholar
  69. Powell, L. A., Redfern, R. C., Millard, A. R., & Gröke, D. R. (2014). Infant feeding practices in Roman London: The isotopic evidence. In P. M. Carroll & E.-J. Graham (Eds.), Infant health and death in Roman Italy and beyond (pp. 89–110). Journal of Roman Archaeology Supplementary Series 98.). Ann Arbor: Journal of Roman Archaeology.Google Scholar
  70. Pre-Construct Archaeology. (2005). Excavation of a Roman farmstead at Bantycock gypsum mine. Balderton: Unpublished Pre-Construct Archaeology Report.Google Scholar
  71. Redfern, R., & Roberts, C. (2005). Health in Romano-British urban communities: Reflections from the cemeteries. In D. N. Smith, M. Brickley, & K. W. McLaughlin Smith (Eds.), Fertile ground: Papers in honour of Susan Limbrey (pp. 115–129). Oxford: Oxbow Books.Google Scholar
  72. Rollo, F., Ubaldi, M., Marota, I., Luciani, S., & Ermini, L. (2002). DNA diagenesis: Effects of environment and time on human bone. Ancient Biomolecules, 4(1), 1–7.CrossRefGoogle Scholar
  73. Scheuer, J. L., Musgrave, J. H., & Evans, S. P. (1980). The estimation of late fetal and perinatal age from limb bone length by linear and logarithmic regression. Annals of Human Biology, 7(3), 257–265.CrossRefGoogle Scholar
  74. Schwartz, J. H., Houghton, F. D., Bondioli, L., & Macchiarelli, R. (2012). Bones, teeth, and estimating age of perinates: Carthaginian infant sacrifice revisited. Antiquity, 86(333), 738–745.CrossRefGoogle Scholar
  75. Scott, E. (1999). The Archaeology of Infancy and Infant Death. British Archaeology Reports 819. Oxford: Archaeopress.Google Scholar
  76. Smith, P., & Avishai, G. (2005). The use of dental criteria for estimating postnatal survival in skeletal remains of infants. Journal of Archaeological Science, 32(1), 83–89.CrossRefGoogle Scholar
  77. Smith, P., & Kahila, G. (1992). Identification of infanticide in archaeological sites: A case study from the Late Roman-Early Byzantine periods at Ashkelon, Israel. Journal of Archaeological Science, 19(6), 667–675.CrossRefGoogle Scholar
  78. Smith, C. I., Nielsen-Marsh, C. M., Jans, M. M. E., & Collins, M. J. (2007). Bone diagenesis in the European Holocene I: Patterns and mechanisms. Journal of Archaeological Science, 34(9), 1485–1493.CrossRefGoogle Scholar
  79. Sosa, C., Vispe, E., Núňez, C., Baeta, M., Casalod, Y., Bolea, M., Hedges, R. E. M., & Martinez-Jarreta, B. (2013). Association between ancient bone preservation and DNA yield: A multidisciplinary approach. American Journal of Physical Anthropology, 151(1), 102–109.CrossRefGoogle Scholar
  80. Tafforeau, P., & Smith, T. M. (2008). Nondestructive imaging of hominoid dental microstructure using phase contrast X-ray synchrotron microtomography. Journal of Human Evolution, 54(2), 272–278.CrossRefGoogle Scholar
  81. Tripp, J. A., Squire, M. E., Hedges, R. E., & Stevens, R. E. (2018). Use of micro-computed tomography imaging and porosity measurements as indicators of collagen preservation in archaeological bone. Palaeogeography, Palaeoclimatology, Palaeoecology, 511, 462–471.CrossRefGoogle Scholar
  82. Trueman, C. N., & Martill, D. M. (2002). The long-term survival of bone: The role of bioerosion. Archaeometry, 44(3), 371–382.CrossRefGoogle Scholar
  83. Turner-Walker, G., & Jans, M. M. E. (2008). Reconstructing taphonomic histories using histological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 227–235.CrossRefGoogle Scholar
  84. Turner-Walker, G., & Syversen, U. (2002). Quantifying histological changes in archaeological bones using BSE-SEM image analysis. Archaeometry, 44(3), 461–468.CrossRefGoogle Scholar
  85. Turner-Walker, G., Nielsen-Marsh, C. M., Syversen, U., Kars, H., & Collins, M. J. (2002). Sub-micron spongiform porosity is the major ultra-structural alteration occurring in archaeological bone. International Journal of Osteoarchaeology, 12(6), 407–414.CrossRefGoogle Scholar
  86. Walker, P. L., Johnson, J. R., & Lambert, P. M. (1988). Age and sex biases in the preservation of human skeletal remains. American Journal of Physical Anthropology, 76(2), 183–188.CrossRefGoogle Scholar
  87. White, L. (2009). The Microbiology of Death. University of Sheffield Unpublished PhD Thesis.Google Scholar
  88. White, L., & Booth, T. J. (2014). The origin of bacteria responsible for bioerosion to the internal bone microstructure: Results from experimentally-deposited pig carcasses. Forensic Science International, 239, 92–102.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Pontus Skoglund Laboratory, The Francis Crick Institute1 Midland RoadLondonUK

Personalised recommendations