Advertisement

Advanced Physiologic Imaging: Perfusion – Theory and Applications

  • Philipp KickingerederEmail author
  • Ji Eun Park
  • Jerrold L. Boxerman
Chapter

Abstract

Magnetic resonance imaging (MRI) is fundamental to the management of patients with brain tumors. Specifically, the characterization of angiogenesis, which is a hallmark of cancer cells, is crucial for the translation of new therapies into the clinic and for assessing therapeutic effects in individual patients. In this context, noninvasive characterization of hemodynamic parameters on MRI has emerged as an important diagnostic tool. This chapter aims to provide a comprehensive overview of the basic principles and clinical applications of the various MRI perfusion techniques in neuro-oncology.

Keywords

Dynamic susceptibility contrast MRI (DSC-MRI) Dynamic contrast-enhanced MRI (DCE-MRI) Arterial spin labeling (ASL) Cerebral blood volume (CBV) Volume transfer constant (KtransGlioma Glioblastoma Neuro-oncology 

Notes

Acknowledgments

Ji Eun Park would like to thank Ho Sung Kim, M.D., Ph.D., for providing valuable insights and helpful comments.

References

  1. 1.
    Thust SC, et al. Glioma imaging in Europe: a survey of 220 centres and recommendations for best clinical practice. Eur Radiol. 2018;28(8):3306–17.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ellingson BM, et al. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol. 2015;17(9):1188–98.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954;6(12):731–44.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rosen BR, et al. Contrast agents and cerebral hemodynamics. Magn Reson Med. 1991;19:285–92.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Weisskoff RM, et al. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time? Magn Reson Med. 1993;29(4):553–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Cha S, et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223(1):11–29.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Murase K, et al. Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging. J Magn Reson Imaging. 2001;13(5):797–806.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Mouridsen K, et al. Automatic selection of arterial input function using cluster analysis. Magn Reson Med. 2006;55(3):524–31.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jahng GH, et al. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol. 2014;15(5):554–77.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Welker K, et al. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol. 2015;36(6):E41–51.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Boxerman JL, et al. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med. 1995;34(4):555–66.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Leu K, Boxerman JL, Ellingson BM. Effects of MRI protocol parameters, preload injection dose, fractionation strategies, and leakage correction algorithms on the fidelity of dynamic-susceptibility contrast MRI estimates of relative cerebral blood volume in gliomas. AJNR Am J Neuroradiol. 2017;38(3):478–84.CrossRefGoogle Scholar
  13. 13.
    Boxerman JL, et al. The role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. AJNR Am J Neuroradiol. 2012;33(6):1081–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Toh CH, et al. Differentiation of primary central nervous system lymphomas and glioblastomas: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging without and with contrast-leakage correction. AJNR Am J Neuroradiol. 2013;34(6):1145–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol. 2006;27(4):859–67.Google Scholar
  16. 16.
    Semmineh NB, et al. Optimization of acquisition and analysis methods for clinical dynamic susceptibility contrast MRI using a population-based digital reference object. AJNR Am J Neuroradiol. 2018;39(11):1981–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Donahue KM, et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med. 2000;43(6):845–53.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Schmiedeskamp H, et al. Combined spin- and gradient-echo perfusion-weighted imaging. Magn Reson Med. 2012;68(1):30–40.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Vonken EJ, et al. Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging. 1999;10(2):109–17.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hu LS, et al. Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol. 2012;33(1):69–76.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Boxerman J, Schmainda K, Weisskoff R. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol. 2006;27(4):859–67.Google Scholar
  22. 22.
    Schmainda KM, et al. Moving Toward a Consensus DSC-MRI Protocol: Validation of a Low-Flip Angle Single-Dose Option as a Reference Standard for Brain Tumors. AJNR Am J Neuroradiol. 2019;40(4):626–33.Google Scholar
  23. 23.
    Kang H, et al. Gadolinium deposition in deep brain structures: relationship with dose and ionization of linear gadolinium-based contrast agents. AJNR Am J Neuroradiol. 2018;39(9):1597–603.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hakyemez B, et al. Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging. 2006;24(4):817–24.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Floriano VH, et al. The role of dynamic susceptibility contrast-enhanced perfusion MR imaging in differentiating between infectious and neoplastic focal brain lesions: results from a cohort of 100 consecutive patients. PLoS One. 2013;8(12):e81509.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Toh CH, et al. Differentiation of brain abscesses from glioblastomas and metastatic brain tumors: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging before and after mathematic contrast leakage correction. PLoS One. 2014;9(10):e109172.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kickingereder P, et al. Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology. 2014;272(3):843–50.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Toh C, et al. Differentiation of primary central nervous system lymphomas and glioblastomas: comparisons of diagnostic performance of dynamic susceptibility contrast-enhanced perfusion MR imaging without and with contrast-leakage correction. AJNR Am J Neuroradiol. 2013;34(6):1145–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wang S, et al. Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2011;32(3):507–14.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Law M, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol. 2004;25(5):746–55.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Hirai T, et al. Prognostic value of perfusion MR imaging of high-grade astrocytomas: long-term follow-up study. AJNR Am J Neuroradiol. 2008;29(8):1505–10.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Jain R, et al. Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology. 2013;267(1):212–20.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bonekamp D, et al. Association of overall survival in patients with newly diagnosed glioblastoma with contrast-enhanced perfusion MRI: comparison of intraindividually matched T - and T -based bolus techniques. J Magn Reson Imaging. 2014;Google Scholar
  34. 34.
    Law M, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247(2):490–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kickingereder P, et al. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models. Radiology. 2016;280(3):880–9, p. 160845.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Maia AC, et al. Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonance imaging. J Neurosurg. 2004;101(6):970–6.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lefranc M, et al. Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies. Stereotact Funct Neurosurg. 2012;90(4):240–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ulmer S, et al. Intraoperative dynamic susceptibility contrast weighted magnetic resonance imaging (iDSC-MRI) – technical considerations and feasibility. Neuroimage. 2009;45(1):38–43.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Law M, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging–prediction of patient clinical response. Radiology. 2006;238(2):658–67.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Danchaivijitr N, et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology. 2008;247(1):170–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Jalbert LE, et al. Magnetic resonance analysis of malignant transformation in recurrent glioma. Neuro Oncol. 2016;18(8):1169–79.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kickingereder P, et al. Relative cerebral blood volume is a potential predictive imaging biomarker of bevacizumab efficacy in recurrent glioblastoma. Neuro Oncol. 2015;17(8):1139–47.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kickingereder P, et al. MR-perfusion derived hemodynamic parametric response mapping of bevacizumab efficacy in recurrent glioblastoma. Radiology. 2016;279(2):542–52.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Schmainda KM, et al. Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol. 2014;16(6):880–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Antonios JP, et al. Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proc Natl Acad Sci U S A. 2017;114(38):10220–10,225.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Stenberg L, et al. Dynamic susceptibility contrast-enhanced perfusion magnetic resonance (MR) imaging combined with contrast-enhanced MR imaging in the follow-up of immunogene-treated glioblastoma multiforme. Acta Radiol. 2006;47(8):852–61.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Vrabec M, et al. MR perfusion and diffusion imaging in the follow-up of recurrent glioblastoma treated with dendritic cell immunotherapy: a pilot study. Neuroradiology. 2011;53(10):721–31.PubMedCrossRefGoogle Scholar
  48. 48.
    Park JE, et al. Pseudoprogression in patients with glioblastoma: assessment by using volume-weighted voxel-based multiparametric clustering of MR imaging data in an independent test set. Radiology. 2015;275(3):792–802.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Prager AJ, et al. Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol. 2015;36(5):877–85.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Young RJ, et al. MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clin Imaging. 2013;37(1):41–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kong DS, et al. Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol. 2011;32(2):382–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Cha J, et al. Differentiation of tumor progression from pseudoprogression in patients with posttreatment glioblastoma using multiparametric histogram analysis. AJNR Am J Neuroradiol. 2014;35(7):1309–17.CrossRefGoogle Scholar
  53. 53.
    Baek HJ, et al. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology. 2012;264(3):834–43.CrossRefGoogle Scholar
  54. 54.
    Boxerman JL, et al. Longitudinal DSC-MRI for distinguishing tumor recurrence from pseudoprogression in patients with a high-grade glioma. Am J Clin Oncol. 2017;40(3):228–34.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kickingereder P, et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep. 2015;5:16238.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kickingereder P, et al. Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology. 2016;281(3):907–18.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Xing Z, et al. Noninvasive assessment of IDH mutational status in World Health Organization grade II and III astrocytomas using DWI and DSC-PWI combined with conventional MR imaging. AJNR Am J Neuroradiol. 2017;38(6):1138–44.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hu LS, et al. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol. 2017;19(1):128–37.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Macyszyn L, et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 2016;18(3):417–25.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Dibble EH, et al. Toxoplasmosis versus lymphoma: cerebral lesion characterization using DSC-MRI revisited. Clin Neurol Neurosurg. 2017;152:84–9.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hourani R, et al. Can proton MR spectroscopic and perfusion imaging differentiate between neoplastic and nonneoplastic brain lesions in adults? AJNR Am J Neuroradiol. 2008;29(2):366–72.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Blasel S, et al. Metabolism and regional cerebral blood volume in autoimmune inflammatory demyelinating lesions mimicking malignant gliomas. J Neurol. 2011;258(1):113–22.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Louis DN, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Law M, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24(10):1989–98.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Zonari P, Baraldi P, Crisi G. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology. 2007;49(10):795–803.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Cha S, et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2005;26(2):266–73.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Lev MH, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol. 2004;25(2):214–21.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Ceccarelli M, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164(3):550–63.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Cancer Genome Atlas Research Network, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98.CrossRefGoogle Scholar
  71. 71.
    Capper D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555(7697):469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hartmann C, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120(6):707–18.PubMedCrossRefGoogle Scholar
  73. 73.
    Louis DN, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.CrossRefGoogle Scholar
  74. 74.
    Koivunen P, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483(7390):484–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Ye D, et al. R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell. 2013;23(3):274–6.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kickingereder P, Andronesi OC. Radiomics, metabolic, and molecular MRI for brain tumors. Semin Neurol. 2018;38(1):32–40.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Andronesi OC, et al. Detection of oncogenic IDH1 mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. J Clin Invest. 2013;123(9):3659–63.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Andronesi OC, et al. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nat Commun. 2018;9(1):1474.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Choi C, et al. Prospective longitudinal analysis of 2-hydroxyglutarate magnetic resonance spectroscopy identifies broad clinical utility for the management of patients with IDH-mutant glioma. J Clin Oncol. 2016;34(33):4030–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Choi C, et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med. 2012;18(4):624–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kickingereder P, et al. Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features. Radiology. 2016;281(3):907–18, p. 161382.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Macyszyn L, et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 2015;18(3):417–25.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lu CF, et al. Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res. 2018;24(18):4429–36.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kang D, et al. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol. 2018;20(9):1251–61.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Bhagavathi S, Wilson JD. Primary central nervous system lymphoma. Arch Pathol Lab Med. 2008;132(11):1830–4.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wen PY, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Leu K, et al. Imaging biomarkers for antiangiogenic therapy in malignant gliomas. CNS Oncol. 2013;2(1):33–47.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Nowosielski M, et al. Progression types after antiangiogenic therapy are related to outcome in recurrent glioblastoma. Neurology. 2014;82(19):1684–92.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chinot OL, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.CrossRefGoogle Scholar
  90. 90.
    Gilbert MR, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wick W., et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial, in 2015 SNO Annual Meeting. 2015: San Antonio.Google Scholar
  92. 92.
    Lu-Emerson C, et al. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol. 2015;33(10):1197–213.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Mayer TM. Can we predict bevacizumab responders in patients with glioblastoma? J Clin Oncol. 2015;33(25):2721–2.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Verhoeff JJ, et al. Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma. Ann Oncol. 2010;21(8):1723–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Schmainda KM, et al. Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol. 2015;17(8):1148–56.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wang N, Jain RK, Batchelor TT. New directions in anti-angiogenic therapy for glioblastoma. Neurotherapeutics. 2017;14(2):321–32.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lim M, et al. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Okada H, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16(15):e534–42.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Radbruch A, et al. Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro Oncol. 2015;17(1):151–9.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Gerstner ER, et al. Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J Neurooncol. 2009;94(1):97–101.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Brandes AA, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192–7.CrossRefGoogle Scholar
  102. 102.
    Balana C, et al. Pseudoprogression as an adverse event of glioblastoma therapy. Cancer Med. 2017;6(12):2858–66.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ellingson BM, et al. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J Neurooncol. 2017;134(3):495–504.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Barajas RF Jr, et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2009;253(2):486–96.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hu LS, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Wan B, et al. The diagnostic performance of perfusion MRI for differentiating glioma recurrence from pseudoprogression: a meta-analysis. Medicine (Baltimore). 2017;96(11):e6333.CrossRefGoogle Scholar
  107. 107.
    Kim JY, et al. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol. 2018;21(3):404–14.CrossRefGoogle Scholar
  108. 108.
    Galban CJ, et al. Prospective analysis of parametric response map-derived MRI biomarkers: identification of early and distinct glioma response patterns not predicted by standard radiographic assessment. Clin Cancer Res. 2011;17(14):4751–60.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Tsien C, et al. Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol. 2010;28(13):2293–9.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    McDonald DM, Baluk P. Significance of blood vessel leakiness in cancer. Cancer Res. 2002;62(18):5381–5.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Bammer R. MR and CT perfusion and pharmacokinetic imaging: clinical applications and theoretical principles. The Netherlands: Wolters Kluwer Health; 2016.Google Scholar
  112. 112.
    Essig M, et al. Perfusion MRI: the five most frequently asked clinical questions. AJR Am J Roentgenol. 2013;201(3):W495–510.PubMedCrossRefGoogle Scholar
  113. 113.
    Essig M, et al. Perfusion MRI: the five most frequently asked technical questions. Am J Roentgenol. 2013;200(1):24–34.CrossRefGoogle Scholar
  114. 114.
    Artzi M, et al. Optimization of DCE-MRI protocol for the assessment of patients with brain tumors. Magn Reson Imaging. 2016;34(9):1242–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology. 2008;249(2):601–13.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Stokes AM, et al. Assessment of a simplified spin and gradient echo (sSAGE) approach for human brain tumor perfusion imaging. Magn Reson Imaging. 2016;34(9):1248–55.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Evelhoch JL. Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging. 1999;10(3):254–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Cuenod CA, Balvay D. Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging. 2013;94(12):1187–204.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Paldino MJ, Barboriak DP. Fundamentals of quantitative dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am. 2009;17(2):277–89.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Tofts PS, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Sung YS, et al. Dynamic contrast-enhanced MRI for oncology drug development. J Magn Reson Imaging. 2016;44(2):251–64.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Miller JC, et al. Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst. 2005;97(3):172–87.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Alcaide-Leon P, Rovira A. Dynamic contrast-enhanced MR: importance of reaching the washout phase. AJNR Am J Neuroradiol. 2013;34(5):E58–9.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Tofts PS T1-weighted DCE imaging concepts: modelling, acquisition and analysis. Signal. 2010;500(450):400.Google Scholar
  125. 125.
    Cheng HL. Improved correlation to quantitative DCE-MRI pharmacokinetic parameters using a modified initial area under the uptake curve (mIAUC) approach. J Magn Reson Imaging. 2009;30(4):864–72.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    O’Connor J, et al. Dynamic contrast-enhanced imaging techniques: CT and MRI. Br J Radiol. 2011;84(special_issue_2):S112–20.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Parker GJ, et al. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med. 2006;56(5):993–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991;17(2):357–67.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Barboriak D, et al. Inter-reader variability in dynamic contrast-enhanced imaging of patients with recurrent glioblastoma multiforme: results from the multi-center ACRIN 6677/RTOG 0625 study. Radiology. 2018;290(2):467–76.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Jackson A, et al. Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res. 2007;13(12):3449–59.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Leach MO, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer. 2005;92(9):1599–610.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Chung WJ, et al. Recurrent glioblastoma: optimum area under the curve method derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. Radiology. 2013;269(2):561–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Narang J, et al. Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro Oncol. 2011;13(9):1037–46.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Nguyen TB, Cron GO. Correlation of tumor immunohistochemistry with dynamic contrast-enhanced and DSC-MRI parameters in patients with gliomas. AJNR Am J Neuroradiol. 2016;37(12):2217–23.PubMedCrossRefGoogle Scholar
  135. 135.
    Li X, et al. Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging. 2015;15:4.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Jung SC, et al. Glioma: Application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading. AJNR Am J Neuroradiol. 2014;35(6):1103–10.PubMedCrossRefGoogle Scholar
  137. 137.
    Jia Z, et al. Quantitative analysis of neovascular permeability in glioma by dynamic contrast-enhanced MR imaging. J Clin Neurosci. 2012;19(6):820–3.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Choi HS, et al. Glioma grading capability: comparisons among parameters from dynamic contrast-enhanced MRI and ADC value on DWI. Korean J Radiol. 2013;14(3):487–92.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Arevalo-Perez J, et al. Dynamic contrast-enhanced perfusion MRI and diffusion-weighted imaging in grading of gliomas. J Neuroimaging. 2015;25(5):792–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Roberts HC, et al. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol. 2000;21(5):891–9.PubMedGoogle Scholar
  141. 141.
    Zhang N, et al. Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J Magn Reson Imaging. 2012;36(2):355–63.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Patankar TF, et al. Is volume transfer coefficient (K(trans)) related to histologic grade in human gliomas? AJNR Am J Neuroradiol. 2005;26(10):2455–65.PubMedGoogle Scholar
  143. 143.
    Ludemann L, et al. Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-enhanced MRI. Magn Reson Imaging. 2005;23(8):833–41.PubMedCrossRefGoogle Scholar
  144. 144.
    Lu S, et al. Utility of dynamic contrast-enhanced magnetic resonance imaging for differentiating glioblastoma, primary central nervous system lymphoma and brain metastatic tumor. Neuroradiology. 2016;85(10):1722–7.Google Scholar
  145. 145.
    Kickingereder P, et al. Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation. AJNR Am J Neuroradiol. 2014;35(8):1503–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Choi YS, et al. Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient. Eur Radiol. 2017;27(4):1344–51.PubMedCrossRefGoogle Scholar
  147. 147.
    Zhang W, et al. Acute effects of bevacizumab on glioblastoma vascularity assessed with DCE-MRI and relation to patient survival. In Intl Soc Magn Reson Med. 2009.Google Scholar
  148. 148.
    Shiroishi MS, Boxerman JL, Pope WB. Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma. Neuro Oncol. 2016;18(4):467–78.PubMedCrossRefGoogle Scholar
  149. 149.
    Choi YS, et al. The initial area under the curve derived from dynamic contrast-enhanced MRI improves prognosis prediction in glioblastoma with unmethylated MGMT promoter. AJNR Am J Neuroradiol. 2017;38(8):1528–35.PubMedCrossRefGoogle Scholar
  150. 150.
    Yun TJ, et al. Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology. 2015;274(3):830–40.PubMedCrossRefGoogle Scholar
  151. 151.
    Thomas AA, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. AJNR Am J Neuroradiol. 2015;125(1):183–90.Google Scholar
  152. 152.
    Hatzoglou V, et al. A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol. 2016;18(6):873–80.PubMedCrossRefGoogle Scholar
  153. 153.
    Yoon RG, et al. Differentiation of recurrent glioblastoma from delayed radiation necrosis by using voxel-based multiparametric analysis of MR imaging data. Radiology. 2017;285(1):206–13.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Hamilton JD, et al. Dynamic contrast-enhanced perfusion processing for neuroradiologists: model-dependent analysis may not be necessary for determining recurrent high-grade glioma versus treatment effect. AJNR Am J Neuroradiol. 2015;36(4):686–93.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Artzi M, et al. Differentiation between treatment-related changes and progressive disease in patients with high grade brain tumors using support vector machine classification based on DCE MRI. J Neurooncol. 2016;127(3):515–24.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Kim HS, et al. Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology. 2014;273(3):831–43.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Artzi M, et al. Differentiation between vasogenic-edema versus tumor-infiltrative area in patients with glioblastoma during bevacizumab therapy: a longitudinal MRI study. Eur J Radiol. 2014;83(7):1250–6.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Artzi M, et al. Classification of tumor area using combined DCE and DSC MRI in patients with glioblastoma. J Neurooncol. 2015;121(2):349–57.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Gerstner ER, et al. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev. Clin Oncol. 2009;6(4):229–36.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Sorensen AG, et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 2009;69(13):5296–300.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kickingereder P, et al. Evaluation of dynamic contrast-enhanced MRI derived microvascular permeability in recurrent glioblastoma treated with bevacizumab. J Neurooncol. 2015;121(2):373–80.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Piludu F, et al. Early biomarkers from dynamic contrast-enhanced magnetic resonance imaging to predict the response to antiangiogenic therapy in high-grade gliomas. Neuroradiology. 2015;57(12):1269–80.PubMedCrossRefGoogle Scholar
  163. 163.
    O’Connor JPB, Jayson GC. Do imaging biomarkers relate to outcome in patients treated with VEGF inhibitors? Clinical Cancer Research. 2012;18(24):6588–98.PubMedCrossRefGoogle Scholar
  164. 164.
    Anzalone N, et al. Brain gliomas: multicenter standardized assessment of dynamic contrast-enhanced and dynamic susceptibility contrast MR images. Radiology. 2018;287(3):933–43.PubMedCrossRefGoogle Scholar
  165. 165.
    Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16(6):1236–49.PubMedCrossRefGoogle Scholar
  166. 166.
    Williams DS, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A. 1992;89(1):212–6.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Grade M, et al. A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice. Neuroradiology. 2015;57(12):1181–202.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Petersen ET, et al. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol. 2006;79(944):688–701.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Pollock JM, et al. Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin N Am. 2009;17(2):315–38.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Goo HW, Ra YS. Advanced MRI for pediatric brain tumors with emphasis on clinical benefits. Korean J Radiol. 2017;18(1):194–207.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Chen Y, Wang DJ, Detre JA. Test-retest reliability of arterial spin labeling with common labeling strategies. J Magn Reson Imaging. 2011;33(4):940–9.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Deibler AR, et al. Arterial spin-labeling in routine clinical practice, Part 1: technique and artifacts. AJNR Am J Neuroradiol. 2008;29(7):1228–34.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Zhang X, et al. In vivo blood T(1) measurements at 1.5 T, 3 T, and 7 T. Magn Reson Med. 2013;70(4):1082–6.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Alsop DC, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Steketee RM, et al. Quantitative Functional Arterial Spin Labeling (fASL) MRI–sensitivity and reproducibility of regional CBF changes using pseudo-continuous ASL product sequences. PLoS One. 2015;10(7):e0132929.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Petersen ET, et al. The QUASAR reproducibility study, Part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage. 2010;49(1):104–13.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Gevers S, et al. Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion. J Cereb Blood Flow Metab. 2011;31(8):1706–15.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Cebeci H, et al. Assessment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method. Eur J Radiol. 2014;83(10):1914–9.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Fudaba H, et al. Comparison of multiple parameters obtained on 3 T pulsed arterial spin-labeling, diffusion tensor imaging, and MRS and the Ki-67 labeling index in evaluating glioma grading. AJNR Am J Neuroradiol. 2014;35(11):2091–8.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Furtner J, et al. Arterial spin-labeling assessment of normalized vascular intratumoral signal intensity as a predictor of histologic grade of astrocytic neoplasms. AJNR Am J Neuroradiol. 2014;35(3):482–9.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Kim MJ, et al. Diagnostic accuracy and interobserver variability of pulsed arterial spin labeling for glioma grading. Acta Radiol. 2008;49(4):450–7.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Lehmann P, et al. A comparative study of perfusion measurement in brain tumours at 3 Tesla MR: Arterial spin labeling versus dynamic susceptibility contrast-enhanced MRI. Eur Neurol. 2010;64(1):21–6.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Ma H, et al. Three-dimensional arterial spin labeling imaging and dynamic susceptibility contrast perfusion-weighted imaging value in diagnosing glioma grade prior to surgery. Exp Ther Med. 2017;13(6):2691–8.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Shen N, et al. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. J Magn Reson Imaging. 2016;44(3):620–32.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Soni N, et al. Perfusion MR imaging of enhancing brain tumors: comparison of arterial spin labeling technique with dynamic susceptibility contrast technique. Neurol India. 2017;65(5):1046–52.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology. 2003;228(2):523–32.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Weber MA, et al. Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology. 2006;66(12):1899–906.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Wolf RL, et al. Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging. 2005;22(4):475–82.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Xiao HF, et al. Astrocytic tumour grading: a comparative study of three-dimensional pseudocontinuous arterial spin labelling, dynamic susceptibility contrast-enhanced perfusion-weighted imaging, and diffusion-weighted imaging. Eur Radiol. 2015;25(12):3423–30.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Yang S, et al. Improving the grading accuracy of astrocytic neoplasms noninvasively by combining timing information with cerebral blood flow: a multi-TI arterial spin-labeling MR imaging study. AJNR Am J Neuroradiol. 2016;37(12):2209–16.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Zeng Q, Jiang B. 3D pseudocontinuous arterial spin-labeling MR imaging in the preoperative evaluation of gliomas. AJNR Am J Neuroradiol. 2017;38(10):1876–83.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Zhang K, et al. Relationship of regional cerebral blood flow and kinetic behaviour of O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in cerebral gliomas. Nucl Med Commun. 2014;35(3):245–51.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Delgado A, et al. Arterial spin labeling MR imaging for differentiation between high- and low-grade glioma-a meta-analysis. Neuro Oncol. 2018;20(11):1450–61.Google Scholar
  194. 194.
    Noguchi T, et al. Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol. 2008;29(4):688–93.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Yamashita K, et al. Differentiating primary CNS lymphoma from glioblastoma multiforme: assessment using arterial spin labeling, diffusion-weighted imaging, and (1)(8)F-fluorodeoxyglucose positron emission tomography. Neuroradiology. 2013;55(2):135–43.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Yamashita K, et al. Arterial spin labeling of hemangioblastoma: differentiation from metastatic brain tumors based on quantitative blood flow measurement. Neuroradiology. 2012;54(8):809–13.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Kang KM, et al. Added value of arterial spin-labeling MR imaging for the differentiation of cerebellar hemangioblastoma from metastasis. AJNR Am J Neuroradiol. 2017;38(11):2052–8.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Choi YJ, et al. Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol. 2013;54(4):448–54.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Ye J, et al. Differentiation between recurrent gliomas and radiation necrosis using arterial spin labeling perfusion imaging. Exp Ther Med. 2016;11(6):2432–6.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Heo YJ, et al. Uninterpretable dynamic susceptibility contrast-enhanced perfusion MR images in patients with post-treatment glioblastomas: cross-validation of alternative imaging options. PLoS One. 2015;10(8):e0136380.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Calmon R, et al. Cerebral blood flow changes after radiation therapy identifies pseudoprogression in diffuse intrinsic pontine gliomas. Neuro Oncol. 2018;20(7):994–1002.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Qiao XJ, et al. Arterial spin-labeling perfusion MRI stratifies progression-free survival and correlates with epidermal growth factor receptor status in glioblastoma. AJNR Am J Neuroradiol. 2015;36(4):672–7.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Furtner J, et al. Prognostic value of blood flow measurements using arterial spin labeling in gliomas. PLoS One. 2014;9(6):e99616.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Ward E, et al. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Poussaint TY, Rodriguez D. Advanced neuroimaging of pediatric brain tumors: MR diffusion, MR perfusion, and MR spectroscopy. Neuroimaging Clin N Am. 2006;16(1):169–92, ix.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Peet AC, et al. Functional imaging in adult and paediatric brain tumours. Nat Rev. Clin Oncol. 2012;9(12):700–11.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Dangouloff-Ros V, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology. 2016;281(2):553–66, p. 152228.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Law-Ye B, et al. Arterial spin labeling to predict brain tumor grading: limits of cutoff cerebral blood flow values. Radiology. 2017;282(2):610–2.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Philipp Kickingereder
    • 1
    Email author
  • Ji Eun Park
    • 2
  • Jerrold L. Boxerman
    • 3
  1. 1.Department of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
  2. 2.Department of Radiology and Research Institute of RadiologyUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulSouth Korea
  3. 3.Department of Diagnostic ImagingRhode Island HospitalProvidenceUSA

Personalised recommendations