Advertisement

Effects Induced by the Presence of Metals in Species of Economic and Ecological Importance in Mexican Aquatic Environments

  • Fernando Alberto Mares Guzmán
  • Mario Alejandro Muñoz Nájera
  • Guadalupe Barrera Escorcia
  • Patricia Ramírez Romero
Chapter

Abstract

The presence of metals in aquatic environments, as a result of human activities, is common. Many water bodies have great importance for aquaculture, which produces and supplies organisms for the food market. Species consumed in Mexico include fish and shellfish from freshwater, brackish, and marine origin. Such is the case of tilapia and oysters that grow in Tenango dam and the estuary of Tecolutla, respectively. The presence of metals and its effects have not been studied in depth in these systems, or the information is restricted.

Biomarkers measurement as an ecotoxicological tool facilitates the diagnosis of the health status of organisms exposed to contaminants. An example of this is metallothioneins, which are biomarkers of exposure that are positively correlated with the concentration of metals present in individuals affected by metal pollution. Also, there are biomarkers of effect, which show biochemical, physiological, or behavioral alterations in organisms exposed to some contaminants; an example is the lysosomal membrane stability and other physiological parameters. Measurement of contaminant concentrations and related biomarkers can be used as an instrument to determine if an organism should be considered an acceptable resource for consumption. Finally, the bioavailability of toxic metals and their trophic transference are important due to the implicit risk to the species and human health.

Keywords

Metals Crassostrea virginica Oreochromis niloticus Biomarker Metallothionein Bioaccumulation Tenango dam Tecolutla estuary 

References

  1. Abbas HHH, Hammada MM, Miller JD (2007) Vitamin C and cadmium toxicity in fish Oreochromis niloticus. Online J Vet Res 11(1):54–74Google Scholar
  2. Abdulali KA, Shuhaimi-Othman M, Ahmad AK (2012) Analysis of heavy metal concentrations in Tilpia fish (Oreochromis niloticus) from four selected markets in Selangor, Peninsular Malaysia. J Biol Sci 12(3):138–145CrossRefGoogle Scholar
  3. Ackermann C (2008) A quantitative and qualitative histological assessment of selected organs of Oreochromis mossambicus after acute exposure to cadmium, chromium and nickel. University of Johannesburg, South Africa, M. Sc. dissertationGoogle Scholar
  4. Adazabra AN, Kombat EO, Fletcher JJ (2014) Parameterization of non-essential heavy metals concentration in different tissues of inland commercial fish Oreochromis niloticus from Vea Dam, Bolgatanga, Northern Ghana. Int J Curr Res Acad Rev 2(7):247–258Google Scholar
  5. Agencia para Sustancias Tóxicas y el Registro de Enfermedades (ATSDR) (2016) Reseña Toxicológica del Cobre. Atlanta: GA. Departamento de Salud y Servicios Humanos de EE. UU., Servicio de Salud Pública. Recuperado el 10 mayo del 2018. Disponible en https://www.atsdr.cdc.gov/es/phs/es_phs132.html
  6. Albert LA (2011) Curso Básico de toxicología ambiental. Limusa, MéxicoGoogle Scholar
  7. American Public Health Association (APHA) (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington, D. C.Google Scholar
  8. Amiard J, Amiard-Triquet C, Barka S, Pellerin J, Rainbow P (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76(2):160–202CrossRefPubMedPubMedCentralGoogle Scholar
  9. Arillo A, Melodio F (1988) Effects of hexavalent chromium on trout mitochondria. Toxicol Lett 44:71–76CrossRefPubMedPubMedCentralGoogle Scholar
  10. Atli G, Canli M (2003) Natural occurrence of metallothionein-like protein in liver of fish Orechromis niloticus and effects of cadmium, lead, copper, zinc, and iron exposures on their profiles. Bull Environ Contam Toxicol 70:619–627CrossRefPubMedPubMedCentralGoogle Scholar
  11. Authman MMN (2008) Orechromis niloticus as a biomonitor of heavy metal pollution with emphasis on potential risk and relation to some biological aspects. Glob Vet 2(3):104–109Google Scholar
  12. Báez ROA (2001) Toxicidad del arsénico de fuentes subterráneas naturales de agua potable y presa Fernando Hirirart Balderrama de Zimapán, Hgo. en Oreochromis niloticus. Tesis de maestría. Instituto Politécnico Nacional (IPN), D.F. MéxicoGoogle Scholar
  13. Baqueiro CER, Borabe L, Goldaracena ICG, Rogríguez NJ (2007) Los moluscos y la contaminación. Una revisión. Revista Mexicana de Biodiversidad Suplemento 78:1–7Google Scholar
  14. Barrera EG (2006) Toxicidad del Cromo y Cadmio en ostión Crassostrea virginica de la laguna de Mandinga, Ver. Tesis de Doctorado en Ciencias Biológicas. Universidad Autónoma Metropolitana. México, D.F. 229 pp.Google Scholar
  15. Blackmore G, Wang W-X (2004) The transfer of cadmium, mercury, methylmercury, and zinc in an intertidal rocky shore food chain. J Exp Mar Biol Ecol 307(1):91–110CrossRefGoogle Scholar
  16. Borgmann U (2000) Methods for assessing the toxicological significance of metals in aquatic ecosystems: bioaccumulation-toxicity relationships water concentrations and sediment spiking approaches. Aquat Ecosyst Health Manag 3:277–289Google Scholar
  17. Brewer SK, Little EE, Delonay AJ, Beauvais SL, Jones SB, Ellersieck MR (2000) Behavioral dysfunctions correlate to altered physiology in rainbow trout (Oncorhynchus mykiss) exposed to cholinesterase-inhibiting chemicals. Arch Environ Contam Toxicol 40:70–76Google Scholar
  18. Brown RJ, Galloway TS, Lowe D, Browne MA, Dissanayake A, Jones MB, Depledge MH (2004) Differential sensitivity of three marine invertebrates to copper assessed using multiple biomarkers. Aquat Toxicol 66(3):267–278CrossRefPubMedPubMedCentralGoogle Scholar
  19. Canli M, Atli G (2003) The relationships between heavy metals (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121(1):129–136CrossRefPubMedPubMedCentralGoogle Scholar
  20. Capó MA (2002) Principios de Ecotoxicología. In: Diagnóstico, tratamiento y gestión del medio ambiente. España, McGraw-HillGoogle Scholar
  21. Carabias J, Landa R (2006) Agua, medio ambiente y sociedad. Colegio de México, MéxicoGoogle Scholar
  22. Chandrasekera LWHU, Pathiratne A, Pathiratne KAS (2008) Effects of water borne cadmium on biomarker enzymes and metallothioneins in Nile tilapia, Oreochromis niloticus. J Natl Sci Found 36(4):315–322Google Scholar
  23. Chapman D (1996) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. Chapman Hill, Londres, p 626CrossRefGoogle Scholar
  24. Chatterjee S, Datta S, Das TK, Veer V, Mishra D, Chakraborty A, Chattopadhyay B, Datta S, Mukhopadhyay KS, Gupta KD (2016) Metal accumulation and metallothionein induction in Orechromis niloticus grown in waster fed fishponds. Ecol Eng 90(16):405–416CrossRefGoogle Scholar
  25. Cleoni Dos Santos C, Aline BV, Sobreiro SH, Gaeta EE, Narciso FM (2012) Biomarker responses as indication of contaminant effects in Orechromis niloticus. Chemosphere 89:60–69CrossRefGoogle Scholar
  26. Comisión Nacional del Agua (CONAGUA) (2016) Ley federal de derechos. Disposiciones aplicables en materia de aguas nacionales. Diario Oficial de la Federación, México. Noviembre 13Google Scholar
  27. Cordero J, Guevara M, Morales E, Lodeiros C (2005) Efecto de metales pesados en el crecimiento de la microalga tropical Tetraselmis chuii (Prasinophyceae). Rev Biol Trop 53:325–330CrossRefPubMedPubMedCentralGoogle Scholar
  28. Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59(4):627–647CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dallinger R, Egg M, Kock G, Hofer R (1997) The role of metallothionein in cadmium accumulation of Arctic char (Salvelinus alpinus) from high mountain lakes. Aquat Toxicol 38:47–66CrossRefGoogle Scholar
  30. Dembele K, Haubruge E, Gaspar C (2000) Concentration effects of selected insecticides on brain acetylcholinesterase in the common carp (Cyprinus carpio L.). Ecotoxicol Environ Saf 45:49–54CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dillon TM, Lynch MP (1981) Physiological response with determinative stress in marine and estuarine organisms. In: Barret W, Rosemberg R (eds) Stress effect on natural ecosystems. Wiley, Chichester, pp 56–134Google Scholar
  32. Dyk JCV, Pieterse GM, Van Vuren JHJ (2007) Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicol Environ Saf 66:432–440CrossRefPubMedPubMedCentralGoogle Scholar
  33. El-Badawi AA (2005) Effect of lead toxicity on some physiological aspects of Nile tilapia fish, Oreochromis niloticus. In: International conferences of the veterinary research division. NRC, CairoGoogle Scholar
  34. EPA (1995) Method 3015A. Microwave assisted acid digestion of aqueous sample an extract. https://www.epa.gov/sites/production/files/2015-12/documents/3015a.pdf
  35. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ettajani H, Berthet B, Amiard JC, Chevolot L (2001) Determination of cadmium partitioning in microalgae and oyster’s contribution to the assessment of trophic transfer. Arch Environ Contam Toxicol 40:209–221CrossRefPubMedPubMedCentralGoogle Scholar
  37. Evans DW, Dodoo DK, Hanson PJ (1993) Trace elements concentrations in fish livers implications of variations with fish size in pollution monitoring. Mar Pollut Bull 26(6):329–334CrossRefGoogle Scholar
  38. Giguére A, Couillard Y, Campbell PG, Perceval O, Hare L, Pinel-Alloul B, Pellerin J (2003) Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient. Aquat Toxicol 64(2):185–200CrossRefPubMedPubMedCentralGoogle Scholar
  39. Gold-Bouchot G, Zapata-Pérez O (2004) Contaminación, ecotoxicología y manejo costero. In: Rivera Arriaga E, Villalobos GJ, Adeath IA, May FR (eds) El Manejo Costero en México, vol 654. Universidad Autónoma de Campeche, SEMARNAT, CETYS-Universidad, Universidad de Quintana Roo, pp 277–286Google Scholar
  40. Gold-Bouchot G, Zapata-Pérez O, Rodríguez-Fuentes G, Ceja-Moreno V, Rio-García M, Chan-Cocom E (2006) Biomarkers and pollutants in the Nile Tilapia, Orechromis niloticus, in four lakes from San Miguel, Chiapas, Mexico. Int J Environ Pollut 26(1–3):129–141CrossRefGoogle Scholar
  41. González-Ramírez CA, Prieto-García F, Prieto-Méndez J, Román-Gutiérrez AD (2009) Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Trop Subtrop Agroecosyst. Sin mes:29–44Google Scholar
  42. Grosell M, Wood CM (2002) Copper uptake across rainbow trout gills: mechanisms of apical entry. J Exp Biol 205:1179–1188PubMedPubMedCentralGoogle Scholar
  43. Gülüzar A, Canli M (2008) Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environ Toxicol Pharmacol 25:33–38CrossRefGoogle Scholar
  44. H. Ayuntamiento de Tecolutla 2014–2017 (2016). Disponible en http://www.tecolutla.gob.mx
  45. Hamilton SJ, Mehrle PM (1986) Metallothionein in fish: a review of its importance in assessing stress from metal contaminants. Trans Am Fish Soc 115:596–609CrossRefGoogle Scholar
  46. Harris ZL, Githlin JD (1996) Genetic and molecular basis for cooper toxicity. Am J Clin Nutr 63:836S–841SCrossRefPubMedPubMedCentralGoogle Scholar
  47. Hauser-Davis RA, Bastos FF, Tuton B, Chávez RR, Saint PT, Ziolli LR, Arruda MAZ (2014) Bile and liver metallothionein behavior in copper-exposed fish. J Trace Elem Med Biol 28:70–74CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hou JL, Zhuang P, Zhang LZ, Feng L, Zhang T, Lium JY (2011) Morphological deformities and recovery, accumulation and elimination of lead in body tissues of Chinese sturgeon, Acipenser sinensis, early life stages: a laboratory study. J Appl Ichthyol 27:514–519CrossRefGoogle Scholar
  49. Instituto Nacional de Ecología-Universidad Autónoma de Chihuahua (INE-UACH) (2007) Estudio de Ordenamiento Ecológico Territorial de las Cuencas Hidrológicas de los ríos Necaxa y Laxaxalpa. https://www.agua.org.mx/biblioteca-tematica/manejo-de-cuencas/95%2D%2Dsp942/676-ordenamiento-de-las-cuencas-de-los-rios-necaxa-y-laxaxalpa. Consultado el 15 de mayo de 2017
  50. Instituto Nacional de Estadística y Geografía (INEGI) (2016) Catálogo Nacional de Indicadores. Disponible en: http://www3.inegi.org.mx
  51. Ivanina AV, Cherkasov AS, Sokolova IM (2008) Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters Crassostrea virginica Gmelin. J Exp Biol 211(4):577–586CrossRefPubMedPubMedCentralGoogle Scholar
  52. Legislación brasileña de metales pesados (LBMP) (2017) Metales pesados en materia de alimentos. http://paguicidas.comercio/MetalPesado.pdf. Consultado el 15 de mayo de 2017
  53. Lemus M, Salazar R, Lapo B, Chung K (2016) Metalotioneínas en bivalvos marinos. Lat Am J Aquat Res 44(2):202–215CrossRefGoogle Scholar
  54. Levine JF, Law M, Corsin F (2006) Bivalvos. In: Lewbart GA (ed) Medicina de los invertebrados. Editorial Acribia, S.A. Zaragoza, España, pp 111–140Google Scholar
  55. Lim LK, Wai KP, Ka-Yee J, Ming CK (1998) Metal toxicity and metallothionein gene expression estudies in common Carp and Tilapia. Mar Environ Res 46(1–5):563–566CrossRefGoogle Scholar
  56. Lowe DM, Soverchia C, Moore MN (1995) Lysosomal membrane responses in the blood and digestive cells of mussels experimentally exposed to fluoranthene. Aquat Toxicol 33(2):105–112CrossRefGoogle Scholar
  57. Lozada-Zarate EJ, Monks S, Pulido-Flores G, Gordillo-Martínez AJ, Prieto-García F (2006) Determinanción de metales pesados en Oreochromis niloticus en la laguna de Metztitlan, Hidalgo, México. https://www.researchgate.net/profile/Alberto_Martinez15/publication/209827913_Determinacion_de_metales_pesados_en_Cyprinus_carpio_en_la_Laguna_de_Metztitlan_Hidalgo_Mexico/links/0046353bd88c3a19d8000000/Determinacion-de-metales-pesados-en-Cyprinus-carpio-en-la-Laguna-de-Metztitlan-Hidalgo-Mexico.pdf. Consultado el 24 de abril de 2018
  58. María VL, Bebianno MJ (2011) Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo (a) pyrene and copper. Comp Biochem Physiol 154(1):56–63Google Scholar
  59. Marques de Cantú MJ (1991) Probabilidad y estadística para ciencias quimicobiológicas. McGraw-Hill, México, 657 pGoogle Scholar
  60. Matozzo V, Ballarin L, Pampanin DM, Marin MG (2001) Effects of copper and cadmium exposure on functional responses of hemocytes in the clam, Tapes philippinarum. Mar Arch Environ Contam Toxicol 41:163–170CrossRefGoogle Scholar
  61. McCarthy JF, Halbrook RS, Shugart LR (1991) Conceptual strategy for design, implementation, and validation of a biomarker-based biomonitoring capability. Oak Ridge National Lab, Oak RidgeGoogle Scholar
  62. Mencías RE, Mayero FLM (2000) Manual de toxicología básica. Díaz de Santos. Madrid, MadridGoogle Scholar
  63. Mohamed EH, Osman AR (2014) Heavy metals concentration in water, muscles and gills of Orechromis niloticus collected from the sewage-treated water and the White Nile. Int J Aquac 4(6):36–42Google Scholar
  64. Mok JS, Yoo HD, Kim PH, Yoon HD, Park YC, Lee TS, Kwon JY, Son KT, Lee HJ, Ha KS, Shim KB, Kim JH (2015) Bioaccumulation of heavy metals in oysters from the southern coast of Korea: assessment of potential risk to human health. Bull Environ Contam Toxicol 94(6):749–755CrossRefPubMedPubMedCentralGoogle Scholar
  65. Moreno GMD (2003) Toxicología ambiental. México, McGraw HillGoogle Scholar
  66. Moulis JM (2010) Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 23(5):877–896CrossRefPubMedPubMedCentralGoogle Scholar
  67. Muhammad JL, Shehu RA, Bilbis LS, Dangoggo SM (2013) Estimation of some heavy metals and mineral elements in tissues of Orechromis niloticus collected from Goronyo Dam and its two tributaries in North-Western sub-Sahara Nigeria. J Environ Sci Toxicol Food Technol 3(5):46–52Google Scholar
  68. Mulu BD, Mehari MW (2013) Distribution of trace metals in two commercially important fish species (Tilapia zilli and Oreochromis niloticus) sediment and water from lake Gubdahri, Eastern Tigrar of Northern Ethiopia. Int J Sci Res Publ 3(9):1–7Google Scholar
  69. Nassiri Y, Rainbow PS, Amiard-Triquet C, Smith BD, Rainglet F (2000) Trace-metal detoxification in the ventral caeca of Orchestia gammarellus (Crustacea: Amphipoda). Mar Biol 136(3):477–484CrossRefGoogle Scholar
  70. Pérez GPE, Azcona CMI (2012) Los efectos del cadmio en la salud. Revista de especialidades Médico-Quirúrgicas 17(3):199–205Google Scholar
  71. Perić L, Nerlović V, Žurga P, Žilić L, Ramšak A (2017) Variations of biomarkers response in mussels Mytilus galloprovincialis to low, moderate and high concentrations of organic chemicals and metals. Chemosphere 174:554–562CrossRefPubMedPubMedCentralGoogle Scholar
  72. Petrovic S, Ozretic B, Krajnovic-Ozretic M, Bobinac D (2001) Lysosomal membrane stability and metallothionein in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in a field study. Mar Pollut Bull 42(12):1373–1378CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pezo DR, Paredes AH, Bedayán ANY (1992) Determinación de metales pesados bioacumulables en especies ícticas de consumo humano en la Amazonia peruana. Folia Amazonica 4(2):171–181CrossRefGoogle Scholar
  74. Prat N, Ríos B, Acosta R, Rieradevall M (2009) Los macroinvertebrados como indicadores de calidad de las aguas. In: Domínguez E, Fernández HR (eds) Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. Fundación Miguel Lillo, Tucumán, pp 631–654Google Scholar
  75. Prescott LM, Harley JP, Klein DA (2000) Microbiologia. McGraw Hill, España, pp 683–702Google Scholar
  76. Pytharopoulou S, Grintzalis K, Sazakli E, Leotsinidis M, Georgiou CD, Kalpaxis DL (2011) Translational responses and oxidative stress of mussels experimentally exposed to Hg, Cu and Cd: one pattern does not fit at all. Aquat Toxicol 105(1–2):157–165CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ramade F (1989) The pollution of the hydrosphere by global contaminants and its effects on aquatic ecosystems. In: Boudou A, Rybeyre F (eds) Aquatic ecotoxicology: fundamental concepts and methodologies. CRC Press Inc, Boca Raton, pp 152, 352 p–183Google Scholar
  78. Ramírez RP, Mendoza CA (2008) Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo. La experiencia en México. SEMARNAT-INE, MéxicoGoogle Scholar
  79. Ramos O, Guevara N, Macías B, Ortiz Y (2004) Evaluación de riesgo a la salud por la presencia de metales pesados en pescado. Toxicología 1:2–4Google Scholar
  80. Reid SD (2011) Molybdenum and chromium. Academic Press, New YorkCrossRefGoogle Scholar
  81. Rodríguez de la Rua A, Arellano J, González M, Blasco J, Sarasquete C (2005) Acumulación de cobre y alteraciones histopatológicas en el ostión Crassostrea angulata. Cienc Mar 31(3):455–466CrossRefGoogle Scholar
  82. Roesijadi G (1992) Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114CrossRefGoogle Scholar
  83. Roesijadi G (1996) Environmental factors: response to metals. In: Kennedy VS, Newell RIE, Eble AF (eds) The eastern oyster Crassostrea virginica. Maryland Sea Grant College, College Park, pp 515–537Google Scholar
  84. Roldán PG (1999) Los macroinvertebrados y su valor como indicadores de la calidad del agua. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 23(88):375–387Google Scholar
  85. Rosenberg DM, King RS, Resh VH (2008) Use of aquatic insects in biomonitoring. In: Merritt RW, Cummins KW, Berg M (eds) An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt, Dubuque, pp 123–137Google Scholar
  86. Saavedra MA (2006) Manejo del cultivo de tilapia. CIDEA-Coastal Resources Center, NicaraguaGoogle Scholar
  87. Scheuhammer AM, Cherian MG (1986) Quantification of metallothionein by silver saturation methods. Toxicol Appl Phamarcol 82(3):417–425CrossRefGoogle Scholar
  88. Schmitz RJ (1995) Introduction to water pollution biology. Gulf Publishing Co., HustonGoogle Scholar
  89. Secretaria de Agricultura, Ganadería, Desarrollo regional, Pesca y Alimentación (SAGARPA) (2012) Criterios técnicos y económicos Para la producción sustentable de Tilapia en México. SAGARPA, MéxicoGoogle Scholar
  90. Secretaría de Agricultura, Ganadería, Desarrollo rural, Pesca y Alimento (SAGARPA) (2006) Manual de producción de tilapia con especificaciones de calidad e inocuidad. SAGARPA, MéxicoGoogle Scholar
  91. Secretaría de Economía (2001) NMX-AA-051-SCFI-2001. In: Determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas. México, Diario oficial de la federaciónGoogle Scholar
  92. Secretaría de Gobernación (SEGOB) (2016) NOM-015-SAG/PESC-2016. Para regular el aprovechamiento de ostión (Crassostrea virginica) en los sistemas lagunarios estuarinos del Estado de Tabasaco. Diario Oficial de la Federación, MéxicoGoogle Scholar
  93. Secretaria de Salud (2011) NOM-242-SSA1-2009. Productos y servicios. Productos de la pesca frescos, refrigerados, congelados y procesados. Especificaciones sanitarias y métodos de prueba. Diario Oficial de la Federación, MéxicoGoogle Scholar
  94. Serafim A, Bebianno MJ (2009) Metallothionein role in the kinetic model of copper accumulation and elimination in the clam Ruditapes decussatus. Environ Res 109(4):390–399CrossRefPubMedPubMedCentralGoogle Scholar
  95. Shiau SY, Ning YC (2003) Estimation of dietary copper requirements of juvenile tilapia Oreochromis niloticus & O. aureus. J Anim Sci 77:287–292CrossRefGoogle Scholar
  96. Sokal RR, Rohlf FJ (2012) Biometry: the principles and practice of statistics in biological research, 4th edn. W. H. Freeman and Co, New YorkGoogle Scholar
  97. Soto-Jiménez MF (2011) Transferencia de elementos traza en tramas tróficas acuáticas. Hidrobiológica 21(3):239–248Google Scholar
  98. Tanguy A, Mura C, Moraga D (2001) Cloning of a metallothionein gene and characterization of two other sequences in the Pacific oyster Crassostrea gigas (CgMT1). Aquat Toxicol 55:35–47CrossRefPubMedPubMedCentralGoogle Scholar
  99. Tataruch F, Kierdorf H (2003) Mammals as bioindicators. In: Bioindicators and biomonitors: principles, concepts and applications. Elsevier, OxfordGoogle Scholar
  100. Taweel A, Shuhaimi-Othman M, Ahmad AK (2011) Heavy metals concentration in different organs of tilapia fish (Orechromis niloticus) from selected areas of Bangi, Selangor, Malaysia. Afr J Biotechnol 10(55):11562–11566Google Scholar
  101. Valdez C, Vázquez GA (2003) Ingeniería de los sistemas de tratamiento y disposición de agua residuales. Fundación ICA, A.C., MéxicoGoogle Scholar
  102. Valle VP (2000) Toxicología de Alimentos. Instituto Nacional de Salud Pública, MéxicoGoogle Scholar
  103. Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk. Assess Environ Toxicol Pharmacol 13:57–149CrossRefPubMedPubMedCentralGoogle Scholar
  104. Yilmaz F (2009) The comparison of heavy metal concentrations (Cd, Cu, Mn, Pb, and Zn) in tissues of three economically important fish (Anguilla anguilla, Mugil cephalus and Orechromis niloticus) inhabiting Koycegiz Lake-Mugla. Turk J Sci Technol 4(1):7–15Google Scholar
  105. Zapata-Pérez O, Gold-Bouchot G, Ortega A, López T, Albores A (2002) Effect of pyrene on hepatic cytochrome P450 1A (CYP1A) expression in Nile tilapia (Oreochromis niloticus). Arch Environ Contam Toxicol 42:477–485CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fernando Alberto Mares Guzmán
    • 1
  • Mario Alejandro Muñoz Nájera
    • 1
  • Guadalupe Barrera Escorcia
    • 1
  • Patricia Ramírez Romero
    • 1
  1. 1.Laboratorio de Ecotoxicología, Departamento de Hidrobiología, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Unidad IztapalapaMexico CityMexico

Personalised recommendations