Advertisement

Tensor Algebra

  • Antonio RomanoEmail author
  • Mario Mango Furnari
Chapter

Abstract

The set \(E^{*}\) of all linear forms on E becomes a vector space on \(\mathfrak {R}\) when we define the sum of two linear forms \(\varvec{\omega }\), \(\varvec{\sigma }\in E^{*}\) and the product of the scalar \(a\in \mathfrak {R}\) and the linear form \(\varvec{\omega }\) in the following way.

Supplementary material

483598_1_En_1_MOESM1_ESM.nb (393 kb)
Supplementary material 1 (nb 392 KB)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”Università degli Studi di Napoli Federico IINaplesItaly
  2. 2.Istituto di CiberneticaNaplesItaly

Personalised recommendations