Advertisement

Characterization of CrN/CrAlN/Cr2O3 Multilayers Coatings Synthesized by DC Reactive Magnetron Sputtering

  • K. AouadiEmail author
  • B. Tlili
  • C. Nouveau
  • A. Besnard
  • M. Chafra
Conference paper
  • 64 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The CrN/CrAlN/Cr2O3 multilayer coatings were deposited by reactive magnetron sputtering DC on 90CrMoV8 stainless steel under various oxygen flow rates. The structure and crystalline phases are characterized by the x-ray diffractometer. Through SEM, a dense and coherent is revealed in CrN/CrAlN/Cr2O3 multilayer coatings. The friction and wear behaviors obtained with the ball-on-disc test show that all multilayer films exhibit a good wear resistance, especially the one with an oxygen flow rate of 10 sccm. Nevertheless, in sea water the film without a top layer of Cr2O3 have the lowest coefficient of friction. This behavior is attributed to the interfacial strengthening and the existence of the upper passivation layer Cr2O3. Adding to that, the film obtained under an oxygen flow rate of 10 sccm show the lowest grain size and the maximum hardness and elastic modulus could respectively, 45 and 417 GPa.

Keywords

Multilayer coatings Microstructure Hardness Wear 

References

  1. 1.
    Alirezaei S, Monirvaghefi SM, Salehi M, Saatchi A (2007) Wear behavior of Ni–P and Ni–P–Al2O3 electroless coatings. Wear 262:978–985.  https://doi.org/10.1016/j.wear.2006.10.013CrossRefGoogle Scholar
  2. 2.
    Alirezaei S, Monirvaghefi SM, Salehi M, Saatchi A (2004) Effect of alumina content on surface morphology and hardness of Ni–PAl2O3(α) electroless composite coatings. Surf Coat Technol 184:170–175.  https://doi.org/10.1016/j.surfcoat.2003.11.013
  3. 3.
    Barshilia HC, Surya Prakash M, Poojari A, Rajam KS (2004) Corrosion behavior of nanolayed TiN y NbN multilayer coatings prepared by reactiveer direct current magnetron sputtering process. Thin Solid Film 460:133–142.  https://doi.org/10.1016/j.tsf.2004.01.096CrossRefGoogle Scholar
  4. 4.
    Barshilia HC, Rajam KS (2008) Growth and characterization of chromium oxide coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering. Appl Surf Sci 255:2925–2931.  https://doi.org/10.1016/j.apsusc.2008.08.057
  5. 5.
    Celik E, Tekmen C, Ozdemir I, Cetinel H, Karakas Y, Okumus SC (2003) Effects on performance of Cr2O3 layers produced on Mo/cast-iron materials. Surf Coat Technol 175:1074–1081.  https://doi.org/10.1016/S0257-8972(03)00361-XCrossRefGoogle Scholar
  6. 6.
    Chang C, Yen SK (2004) Characterization of electrolytic ZrO2/Al2O3 double layer coatings on AISI 440C stainless steel. Surf Coat Technol 182:242–250.  https://doi.org/10.1016/S0257-8972(03),00862-4CrossRefGoogle Scholar
  7. 7.
    Gaillard Y, Rico VJ, Jimenez-Pique E, Gonzalez-Elipe A (2009) Nanoindentation of TiO2 thin films with different microstructures. J Phys D Appl Phys 42:145305–145314.  https://doi.org/10.1088/0022-3727/42/14/145305CrossRefGoogle Scholar
  8. 8.
    Helmersson U, Todorova S, Barnett SA et al (1987) Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J Appl Phys 481:1–5.  https://doi.org/10.1063/1.339770CrossRefGoogle Scholar
  9. 9.
    Ho Wei-Yu, Huang D-H, Huang L-T, Hsu C-H, Wang D-Y (2004) Study of characteristics of Cr2O3/CrN duplex coatings for aluminum die casting applications. Surf Coat Technol 178:172–177.  https://doi.org/10.1016/j.surfcoat.2003.06.017CrossRefGoogle Scholar
  10. 10.
    Hones P, Diserens M, Lévy F (1999) Characterization of sputter-deposited chromium oxide thin films. Surf Coat Technol 121:277–283.  https://doi.org/10.1016/S0257-8972(99),00384-9CrossRefGoogle Scholar
  11. 11.
    Huang S, Chen S, Kuo Y et al (2011) Mechanical and tribological properties evaluation of cathodic arc deposited CrN/ZrN multilayer coatings. Surf Coat Technol 206:1744–1752.  https://doi.org/10.1016/j.surfcoat.2011.10.029CrossRefGoogle Scholar
  12. 12.
    Ichimura H, Rodrigob A (2000) The correlation of scratch adhesion with composite hardness for TiN coatings. Surf Coat Technol 126:152–158.  https://doi.org/10.1016/S0257-8972(00),00541-7CrossRefGoogle Scholar
  13. 13.
    Kim H, Koh Y, Kim H (2000) Densification and mechanical properties of B4C with Al2O3 as a sintering aid. J Am Ceram Soc 65:2863–2865.  https://doi.org/10.1111/j.1151-2916.2000.tb01647.xCrossRefGoogle Scholar
  14. 14.
    Kong M, Wu X, Huang B, Li G (2009) Epitaxial growth and superhardness effect of TiN/AlON nanomultilayers synthesized by reactive magnetron sputtering technology. J Alloy Compd 485:435–438.  https://doi.org/10.1016/j.jallcom.2009.05.133CrossRefGoogle Scholar
  15. 15.
    Li W, Liu P, Wang J et al (2011) Microstructure and mechanical properties of TiAlN/SiO2 nanomultilayers synthesized by reactive magnetron sputtering. Mater Lett 65:636–638.  https://doi.org/10.1016/j.matlet.2010.11.073CrossRefGoogle Scholar
  16. 16.
    Lin C, Tsai Y, Duh J (2010) Effect of grain size on mechanical properties in CrAlN/SiNx multilayer coatings. Thin Solid Films 518:7312–7315.  https://doi.org/10.1016/j.tsf.2010.04.100CrossRefGoogle Scholar
  17. 17.
    Liu H, Tao J, Xu J, Chen Z, Gao Q (2009) Corrosion and tribological behaviors of chromium oxide coatings prepared by the glow-discharge plasma technique. Surf Coat Technol 204:28–36.  https://doi.org/10.1016/j.surfcoat.2009.06.020CrossRefGoogle Scholar
  18. 18.
    Luo F, Gao K, Pang X, Yang H, Qiao L, Wang Y (2008) Characterization of the mechanical properties and failure modes of hard coatings deposited by RF magnetron sputtering. Surf Coat Technol 202:3354–3359.  https://doi.org/10.1016/j.surfcoat.2007.12.020CrossRefGoogle Scholar
  19. 19.
    Luo F, Pang X, Gao K, Yang H, Wang Y (2007) Role of deposition parameters on microstructure and mechanical properties of chromium oxide coatings. Surf Coat Technol 202:58–62.  https://doi.org/10.1016/j.surfcoat.2007.04.066CrossRefGoogle Scholar
  20. 20.
    Mahieu S, Depla D (2009) Reactive sputter deposition of TiN layers: modelling the growth by characterization. J Phys D Appl Phys 42:053002.  https://doi.org/10.1088/0022-3727/42/5/053002CrossRefGoogle Scholar
  21. 21.
    Mori T, Fukuda S, Takemura Y (2001) Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering. Surf Coat Technol 140:122–127.  https://doi.org/10.1016/S0257-8972(01),01021-0CrossRefGoogle Scholar
  22. 22.
    Rahmoun K, Iost A, Keryvin V, Guillemot G, Chabane Sari NE (2009) A multilayer model for describing hardness variations of aged porous silicon low-dielectric-constant thin films. Thin Solid Films 518:213–221.  https://doi.org/10.1016/j.tsf.2009.07.040CrossRefGoogle Scholar
  23. 23.
    Sproul WD (1996) Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings. Surf Coat Technol 87:170–176.  https://doi.org/10.1016/S0257-8972(96),02977-5CrossRefGoogle Scholar
  24. 24.
    Wang Z, Zhang D, Ke P, Liu X, Wang A (2015) Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method. J Mater Sci Technol 31:37–42.  https://doi.org/10.1016/j.jmst.2014.06.002CrossRefGoogle Scholar
  25. 25.
    Yue J, Liu Y, Li G (2008) Microstructure and mechanical properties of VN/SiO2 nanomultilayers synthesized by reactive sputtering. Mater Lett 62:1621–1623.  https://doi.org/10.1016/j.matlet.2007.09.040

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • K. Aouadi
    • 1
    Email author
  • B. Tlili
    • 2
  • C. Nouveau
    • 1
  • A. Besnard
    • 1
  • M. Chafra
    • 3
  1. 1.LaBoMaP, Arts et Métiers ParisTechClunyFrance
  2. 2.Université de Tunis, El-Manar Ecole Nationale d’Ingénieurs de Tunis, LR-11-ES19, Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI)TunisTunisia
  3. 3.Laboratoire de Systèmes et de Mécanique AppliquéeLa Marsa, TunisTunisie

Personalised recommendations