Advertisement

Analysis on the Dependence of the Fracture Locus on the Pressure and the Lode Angle

  • Nouira Meriem
  • Oliveira Marta
  • Khalfallah AliEmail author
  • Alves José
  • Menezes Luís
Conference paper
  • 71 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Classical fracture models assume that the stress triaxiality is the key parameter controlling the magnitude of the fracture strain. However, recent works shown the influence of other parameters that characterize the stress state on the prediction of fracture strains. In this work, two uncoupled fracture models, Mae and Wierzbicki [8] and Xue and Wierzbicki [9], were analysed using finite element models. These models define a ductile fracture locus formulated in the 3D space of the stress triaxiality, Lode angle parameter and the equivalent fracture strain. The material selected was a cast A356 aluminium alloy for which the model parameters were previously defined. Two groups of tests are analysed in order to provide additional information on the material ductility. The first corresponds to plane strain tests carried out on flat plates with different grooves. The second corresponds to uniaxial tension tests applied on smooth and notched round bars, which were designed with different notch radii. These specimens allow covering a wide range of stress triaxiality. The present work extracts the evolution of the equivalent plastic strain at fracture, the stress triaxiality and the Lode angle parameter in order to evaluate the possibility of using either smooth and notched bars tests or smooth and notched bars tests and grooved plates to evaluate the 3D locus for high values of stress triaxiality. In this context, a new function is proposed to describe the equivalent plastic strain at fracture based on the stress triaxiality and the Lode angle parameter.

Keywords

Uncoupled fracture models 3D fracture locus Equivalent fracture strain Stress triaxiality Lode angle 

Nomenclature

\( {E} \)

Young’s modulus

\( {k} \)

Exponent in curvilinear Lode angle dependence function

\( {m} \)

Damage exponent

\( {n} \)

Strain hardening exponent

\( {p} \)

Mean pressure

\( {p}_{{{lim}}} \)

Limiting pressure below which no damage occurs

\( {q} \)

Exponent in pressure dependence function

\( {\eta}= \sigma_{m} /\sigma_{eq} \)

Stress Triaxiality

\( \bar{{\varepsilon }}_{{f}} \)

Equivalent fracture strain

\( \bar{{\varepsilon }}_{{{f}0}} \)

Reference equivalent fracture strain

\( ({\bar{{\upvarepsilon}}}_{{{\mathbf{f}},{\mathbf{t}}}} ) \)

Effective fracture strain under uniaxial tension

\( \left( {{\bar{{\upvarepsilon}}}_{{{\mathbf{f}},{\mathbf{s}}}} } \right) \)

Effective fracture strain under pure shear

\( {\gamma} \)

Ratio of fracture strains

\( {\xi}, {\theta}_{{l}} \)

Third invariant of the deviatoric stress tensor, Lode angle

\( {\mu}_{{p}} \)

Pressure dependence function

\( {\mu}_{{\theta}} \)

Lode angle dependence function

\( \vartheta \)

Poisson’s ratio

\( {\sigma}_{1,2,3} \)

Principal components of the Cauchy stress tensor

\( {\sigma} \)

Cauchy Stress tensor

\( {\sigma}_{{m}} \)

Mean stress

\( {\sigma}_{{{eq}}} ,\bar{{\sigma }} \)

Equivalent stress

\( {J}_{3} = {\text{s}}_{1} {\text{s}}_{2} {\text{s}}_{3} \)

Is the third stress invariant

\( {D} \)

Damage accumulation

\( {y}_{0} , {k}\,{\text{and}}\, {n} \)

Swift law hardening parameters.

References

  1. 1.
    Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRefGoogle Scholar
  2. 2.
    Teng X, Wierzbicki T (2006) Evaluation of six fracture models in high velocity perforation. Eng Fract Mech 73(12):1653–1678CrossRefGoogle Scholar
  3. 3.
    Bao Y (2003) Prediction of ductile crack formation in uncracked bodies. PhD thesis, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  4. 4.
    Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–98CrossRefGoogle Scholar
  5. 5.
    Bao Y, Wierzbicki T (2005) On the cut-off value of negative triaxiality for fracture. Eng Fract Mech 72(7):1049–1069CrossRefGoogle Scholar
  6. 6.
    Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and lode dependence. Int J Plast 24(6):1071–1096CrossRefGoogle Scholar
  7. 7.
    Wilkins ML, Streit RD, Reaugh JE (1980) Cumulative-strain-damage model of ductile fracture: simulation and prediction of engineering fracture tests. Lawrence Livermore Laboratory, Technical Report No. UCRL-53058Google Scholar
  8. 8.
    Teng X, Mae H, Wierzbicki T (2008) Calibration of ductile fracture properties of a cast aluminum alloy. Mater Sci Eng, A 459:156–166Google Scholar
  9. 9.
    Xue L, Wierzbicki T (2008) Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. Int J Solids Struct 44(16):5163–5181CrossRefGoogle Scholar
  10. 10.
    Menezes LF, Teodosiu C (2000) J Mater Process Technol 97:100–106CrossRefGoogle Scholar
  11. 11.
    Oliveira MC, Alves JL, Menezes LF (2008) Arch Comput Methods Eng 15:113–162MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jinwoo L, Se-Jong K, Daeyong K (2017) Metal plasticity and ductile fracture modeling for cast aluminum alloy parts. J Mater Proc Technol,  https://doi.org/10.1016/j.jmatprotec.2017.12.040
  13. 13.
    Mae H, Teng X, Comparison of ductile fracture properties of aluminum castings: Sand mold vs. metal mold. Int J Solids Struct 45:1430–1444Google Scholar
  14. 14.
    Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217CrossRefGoogle Scholar
  15. 15.
    McClintock FA (1968) A criterion of ductile fracture by the growth of holes. ASME J Appl Mech 35:363–371CrossRefGoogle Scholar
  16. 16.
    Teng X,Wierzbicki T, Bai Y (2008) On the application of stress triaxiality formula for plane strain fracture testing. J Eng Mater Technol  https://doi.org/10.1115/1.3078390
  17. 17.
    Antonin P, Jan R, Miroslav S (2013) Identification of ductile damage parameters. In: Simulia community conferenceGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nouira Meriem
    • 1
    • 2
  • Oliveira Marta
    • 3
  • Khalfallah Ali
    • 1
    • 4
    Email author
  • Alves José
    • 5
  • Menezes Luís
    • 3
  1. 1.Laboratoire de Génie MécaniqueEcole Nationale d’Ingénieurs de Monastir, University of MonastirMonastirTunisia
  2. 2.Ecole Nationale d’Ingénieurs de Sousse, University of SousseSousseTunisia
  3. 3.Department of Mechanical EngineeringCEMMPRE, University of CoimbraCoimbraPortugal
  4. 4.Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, University of SousseSousseTunisia
  5. 5.Department of Mechanical EngineeringCMEMS, University of MinhoGuimarãesPortugal

Personalised recommendations