Advertisement

Effect of Cylindrical Particle Orientation on the Flow and Temperature Distribution

  • Hajer TroudiEmail author
  • Moncef Ghiss
  • Mohamed Ellejmi
  • Zoubeir Tourki
Conference paper
  • 68 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Drag coefficient and average Nusselt number are a critical operating parameters in fluid-particle processes. In this paper, a 3-D computational fluid dynamics (CFD) software is established to investigate the influence of the particle angle orientation on these parameters. A series of particles (spherical and non-spherical) has been developed and corresponding simulations are validated using correlations with reasonable accuracy. The results show that the average Nusselt number increases slowly with the particle angle orientation increasing from 0° to 30°, and rapidly when the angle orientation increases from 45° to 90°. The behavior gives high heat transfer, especially on the upper and front side of the cylinder when the gas velocity is high.

Keywords

Angle orientation Average Nusselt number CFD simulation Cylindrical particle Drag coefficient 

References

  1. 1.
    Breakey David ES, Farid VG, Masliyah JH, Sean Sanders R (2018) Side-view-only determination of drag coefficient and settling velocity for non-spherical particles. Powder Technol 339:182–191CrossRefGoogle Scholar
  2. 2.
    Cao Z, Tafti DK (2018) Investigation of drag, lift and torque for fluid flow past a low aspect ratio (1:4) cylinder. Comput Fluids 177:123–135MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dierich F, Nikrityuk PA (2013) A numerical study of the impact of surface roughness on heat and fluid flow past a cylindrical particle. Int J Therm Sci 65:92–103CrossRefGoogle Scholar
  4. 4.
    Dixon AG (2014) CFD study of effect of inclination angle on transport and reaction in hollow cylinder catalysts. Chem Eng Res Des 92(7):1279–1295CrossRefGoogle Scholar
  5. 5.
    Ellendt N, Lumanglas AM, Imani Moqadam S, Mädler L (2018) A model for the drag and heat transfer of spheres in the laminar regime at high temperature differences. Int J Therm Sci 133:98–105CrossRefGoogle Scholar
  6. 6.
    Feng Z-G, Michaelides EE (2000) A numerical study on the transient heat transfer from a sphere at high reynolds and peclet numbers 43:219–29Google Scholar
  7. 7.
    Gabitto J, Tsouris C (2008) Drag coefficient and settling velocity for particles of cylindrical shape. Powder Technol 183(2):314–322CrossRefGoogle Scholar
  8. 8.
    Ganser GH (1993) A rational approach to drag prediction nonspherical particles. Powder Technol 77:143–152CrossRefGoogle Scholar
  9. 9.
    Hölzer A, Sommerfeld M (2008) New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol 184(3):361–365CrossRefGoogle Scholar
  10. 10.
    Ke C et al (2018) On the drag coefficient and averaged Nusselt number of an ellipsoidal particle in a fluid. Powder Technol 325:134–144CrossRefGoogle Scholar
  11. 11.
    Ranz WE, Marshall WR (1952) Evaporation from drops. Chem Eng Prog 48(3):173–180Google Scholar
  12. 12.
    Richter A, Nikrityuk PA (2012) Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical reynolds numbers. Int J Heat Mass Transf 55(4):1343–1354CrossRefGoogle Scholar
  13. 13.
    Tabata M, Itakura K (1998) A precise computation of drag coefficients of a sphere. Int J Comput Fluid Dyn 9(3–4):303–311CrossRefGoogle Scholar
  14. 14.
    Whitaker S (1972) Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE J 18(2):361–371CrossRefGoogle Scholar
  15. 15.
    Yang W-C (2003) Handbook of fluidization and fluid-particle systems, New YorkGoogle Scholar
  16. 16.
    Zhang ZL et al (2019) A finite particle method with particle shifting technique for modeling particulate flows with thermal convection. Int J Heat Mass Transf 128:1245–1262CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hajer Troudi
    • 1
    Email author
  • Moncef Ghiss
    • 1
  • Mohamed Ellejmi
    • 2
  • Zoubeir Tourki
    • 1
  1. 1.Laboratory of Mechanical of Sousse “LMS”University of SousseSousseTunisia
  2. 2.Alpha Engineering International, AEISousseTunisia

Personalised recommendations