Advertisement

LAOS (Large Amplitude Oscillatory Shear) Applications for Semisolid Foods

  • Gamze Yazar
  • Ozlem Caglar Duvarci
  • Merve Yildirim Erturk
  • Jozef L. KokiniEmail author
Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

The rheological behavior of semisolid foods under large amplitude oscillatory shear (LAOS) can offer more detailed understanding of structural changes occurring during processing and consumption compared to traditional rheometry. This chapter focuses on a detailed description of LAOS measurements, including theory, testing method, data interpretation, and corrections. It also discusses LAOS application to food systems with different core structures ranging from dilute dispersions to gels, foams, emulsions, and soft elastic networks, along with a special emphasis on yogurt. Type of stress responses for different rheological behavior, Lissajous-Bowditch curves, and the resulting LAOS parameters (\( {G}_M^{\prime } \), \( {G}_L^{\prime } \), \( {\eta}_M^{\prime } \), \( {\eta}_L^{\prime } \), e3/e1, ν3/ν1, S, and T) are used to understand the structural changes in all of these foods with special emphasis on high-fat, low-fat, and non-fat yogurt.

References

  1. Amemiya, J. I., & Menjivar, J. A. (1992). Comparison of small and large deformation measurements to characterize the rheology of wheat flour doughs. Journal of Food Engineering, 16, 91–108.CrossRefGoogle Scholar
  2. Anvari, M., & Joyner (Melito), H. S. (2018). Effect of fish gelatin and gum arabic interactions on concentrated emulsion large amplitude oscillatory shear behavior and tribological properties. Food Hydrocolloids, 79, 518–525.Google Scholar
  3. Anvari, M., Tabarsa, M., & Joyner (Melito), H. S. (2018). Large amplitude oscillatory shear behavior and tribological properties of gum extracted from Alyssum homolocarpum seed. Food Hydrocolloids, 77, 669–676.Google Scholar
  4. Atalik, K., & Keunings, R. (2002). Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method. The Journal of Non-Newtonian Fluid Mechanics, 102, 299–319.CrossRefGoogle Scholar
  5. Bae, J.-E., Lee, M., Cho, K. S., Seo, K. H., & Kang, D.-G. (2013). Comparison of stress-controlled and strain-controlled rheometers for large amplitude oscillatory shear. Rheologica Acta, 52, 841–857.CrossRefGoogle Scholar
  6. Bi, C.-H., Li, D., Wang, L.-J., Wang, Y., & Adhikari, B. (2013). Characterization of non-linear rheological behavior of SPI–FG dispersions using LAOS tests and FT rheology. Carbohydrate Polymers, 92, 1151–1158.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bird, R. B., Armstrong, R. C., & Hassager, O. (1987). Dynamics of polymeric liquids. New York: Wiley.Google Scholar
  8. Brugnoni, L. I., Tarifa, M. C., Lozzano, J. E., & Genovese, D. (2014). In situ rheology of yeast biofilms. Biofouling, 30(10), 1269–1279.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Dus, S. J., & Kokini, J. L. (1990). Prediction of the nonlinear viscoelastic properties of a hard wheat flour dough using the Bird-Carreau constitutive model. Journal of Rheology, 34(7), 1069–1084.CrossRefGoogle Scholar
  10. Duvarci, O. C., Yazar, G., & Kokini, J. L. (2017a). The comparison of LAOS behavior of structured food materials (suspensions, emulsions and elastic networks). Trends in Food Science & Technology, 60, 2–11.CrossRefGoogle Scholar
  11. Duvarci, O. C., Yazar, G., & Kokini, J. L. (2017b). The SAOS, MAOS and LAOS behavior of a concentrated suspension of tomato paste and its prediction using the Bird-Carreau (SAOS) and Giesekus models (MAOS-LAOS). Journal of Food Engineering, 208, 77–88.CrossRefGoogle Scholar
  12. Ewoldt, R. H., Hosoi, A. E., & McKinley, G. H. (2007). Rheological fingerprinting of complex fluids using large amplitude oscillatory shear (LAOS) flow. Annual Transactions of the Nordic Rheology Society, 15, 3–8.Google Scholar
  13. Ewoldt, R. H., Hosoi, E., & McKinley, G. H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. Journal of Rheology, 5, 1427–1458.CrossRefGoogle Scholar
  14. Ewoldt, R. H., & McKinley, G. H. (2010). On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves. Rheologica Acta, 49(2), 213–219.CrossRefGoogle Scholar
  15. Ewoldt, R. H. (2013). Defining nonlinear rheological material functions for oscillatory shear. Journal of Rheology, 57(1), 177–195.CrossRefGoogle Scholar
  16. Ewoldt, R. H., & Bharadwaj, N. A. (2013). Low-dimensional intrinsic material functions for nonlinear viscoelasticity. Rheologica Acta, 52, 201–219.CrossRefGoogle Scholar
  17. Franck, A. J. (2006). Understanding instrument compliance correction in oscillation. TA Instruments Product Note APN, 13. New Castle, DE. (http://www.tainstruments.com/pdf/literature/APN013_V1_Understanding_Instrument_Compliance.pdf).  
  18. Fuongfuchat, A., Seetapan, N., Makmoon, T., Pongjaruwat, W., Methacanon, P., & Gamonpilas, C. (2012). Linear and non-linear viscoelastic behaviors of crosslinked tapioca starch/polysaccharide systems. Journal of Food Engineering, 109, 571–578.CrossRefGoogle Scholar
  19. Goudoulas, T. B., & Germann, N. (2017). Phase transition kinetics and rheology of gelatin-alginate mixtures. Food Hydrocolloids, 66, 49–60.CrossRefGoogle Scholar
  20. Graham, M. (1995). Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows. Journal of Rheology, 39, 697–712.CrossRefGoogle Scholar
  21. Hibberd, G. E., & Parker, N. S. (1979). Dynamic viscoelastic behavior of wheat flour doughs, Part 4: Non-linear behavior. Rheologica Acta, 14, 151–157.CrossRefGoogle Scholar
  22. Hoyle, D. M., Auhl, D., Harlen, O. G., Barroso, V. C., Wilhelm, M., & McLeish, T. C. B. (2014). Large amplitude oscillatory shear and Fourier transform rheology analysis of branched polymer melts. Journal of Rheology, 58, 969–997.CrossRefGoogle Scholar
  23. Hudson, R. E., Holder, A. J., Hawkins, K. M., Williams, P. R., & Curtis, D. J. (2017). An enhanced rheometer inertia correction procedure (ERIC) for the study of gelling systems using combined motor-transducer rheometers. Physics of Fluids, 29, 121–602.CrossRefGoogle Scholar
  24. Hyun, K., Kim, S. H., Ahn, K. H., & Lee, S. J. (2002). Large amplitude oscillatory shear as a way to classify the complex. Journal of Non-Newtonian Fluid Mechanics, 107, 51–65.CrossRefGoogle Scholar
  25. Hyun, K., Lim, H. T., & Ahn, K. H. (2012). Nonlinear response of polypropylene (PP)/Clay nanocomposites under dynamic oscillatory shear. Korea-Australia Rheology Journal, 24, 113–120.CrossRefGoogle Scholar
  26. Hyun, K., Wilhelm, M., Klein, C. O., Cho, K. S., Nam, J. G., Ahn, K. H., Lee, S. J., Ewoldt, R. H., & McKinley, G. H. (2011). A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Progress in Polymer Science, 36, 1697–1753.CrossRefGoogle Scholar
  27. Joyner (Melito), H. S., & Meldrum, A. (2016). Rheological study of different mashed potato preparations using large amplitude oscillatory shear and confocal microscopy. Journal of Food Engineering, 169, 326–337.Google Scholar
  28. Khatkar, S. B., & Schofield, J. D. (2002). Dynamic rheology of wheat flour dough. I. Non-linear viscoelastic behavior. Journal of the Science of Food and Agriculture, 82, 827–829.CrossRefGoogle Scholar
  29. Klein, C., Venema, P., Sagis, L., & van der Linden, E. (2008). Rheological discrimination and characterization of carrageenans and starches by Fourier transform rheology in the non-linear viscous regime. Journal of Non-Newtonian Fluid Mechanics, 151, 145–150.CrossRefGoogle Scholar
  30. Läuger, J., & Stettin, H. (2010). Differences between stress and strain control in the non-linear behavior of complex fluids. Rheologica Acta, 49, 909–930.CrossRefGoogle Scholar
  31. Läuger, J., & Stettin, H. (2016). Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers. Journal of Rheology, 60(3), 393–406.CrossRefGoogle Scholar
  32. Lee, W. J., & Lucey, J. A. (2010). Formation and physical properties of yogurt. Asian Australasian Journal of Animal Sciences, 23(9), 1127–1136.CrossRefGoogle Scholar
  33. Lefebvre, J. (2006). An outline of the non-linear viscoelastic behavior of wheat flour dough in shear. Rheologica Acta, 45, 525–538.CrossRefGoogle Scholar
  34. Lefebvre, J. (2009). Nonlinear, time-dependent shear flow behavior, and shear-induced effects in wheat flour dough rheology. Journal of Cereal Science, 49, 262–271.CrossRefGoogle Scholar
  35. Liu, Q., Bao, H., Xi, C., & Miao, H. (2014). Rheological characterization of tuna myofibrillar protein in linear and nonlinear viscoelastic regions. Journal of Food Engineering, 121, 58–63.CrossRefGoogle Scholar
  36. Lucey, J. A., Munro, P. A., & Singh, H. (1998). Rheological properties and microstructure of acid milk gels as affected by fat content and heat treatment. Journal of Food Science, 63(4), 660–664.CrossRefGoogle Scholar
  37. Macias-Rodriguez, B. A., Ewoldt, R. H., & Marangoni, A. G. (2018). Nonlinear viscoelasticity of fat crystal networks. Rheologica Acta, 57, 251–266.CrossRefGoogle Scholar
  38. Martinetti, L., Mannion, A. M., Voje, W. E., Jr., Xie, R., Ewoldt, R. H., Morgret, L. D., Bates, F. S., & Macosco, C. W. (2014). A critical gel fluid with high extensibility: The rheology of chewing gum. Journal of Rheology, 58(4), 821–838.CrossRefGoogle Scholar
  39. Merger, D., & Wilhelm, M. (2014). Intrinsic nonlinearity from LAOStrain experiments on various strain- and stress-controlled rheometers: A quantitative comparison. Rheologica Acta, 53(8), 621–634.CrossRefGoogle Scholar
  40. Melito, H. S., Daubert, C. R., & Foegeding, E. A. (2012). Creep and large amplitude oscillatory shear behavior of whey protein isolate/-carrageenan gels. Applied Rheology, 22(6), 521–534.Google Scholar
  41. Melito, H. S., Daubert, C. R., & Foeeding, E. A. (2013a). Relating large amplitude oscillatory shear and food behavior: Correlation of nonlinear viscoelastic, rheological, sensory and oral processing behavior of whey protein isolate/−carrageenan gels. Journal of Food Process Engineering, 36, 521–534.CrossRefGoogle Scholar
  42. Melito, H. S., Daubert, C. R., & Foeeding, E. A. (2013b). Relationships between nonlinear viscoelastic behavior and rheological, sensory and oral processing behavior of commercial cheese. Journal of Texture Studies, 44, 253–288.CrossRefGoogle Scholar
  43. Mudgil, P., Jumah, B., Ahmad, M., Hamed, F., & Maqsood, S. (2018). Rheological, micro-structural and sensorial properties of camel milk yogurt as influenced by gelatin. LWT- Food Science and Technology, 98, 646–653.CrossRefGoogle Scholar
  44. Nam, J. G., Ahn, K. H., Lee, S. J., & Hyun, K. (2010). First normal stress difference of entangled polymer solutions in large amplitude oscillatory shear flow. Journal of Rheology, 54(6), 1243–1266.CrossRefGoogle Scholar
  45. Ng, T. S. K., McKinley, G. H., & Padmanabhan, M. (2006). Linear to non-linear rheology of wheat flour dough. Applied Rheology, 16(5), 265–274.CrossRefGoogle Scholar
  46. Ng, T. S. K., McKinley, G. H., & Ewoldt, R. H. (2011). Large amplitude oscillatory shear flow of gluten dough: A model power-law gel. Journal of Rheology, 55(3), 627–654.CrossRefGoogle Scholar
  47. Pascual, P. A. L., Le, T. T., & Dewettinck, K. (2016). Rheological characteristics of yoghurt with varying levels of milk fat globule membrane. Journal of Science, Engineering and Technology, 4, 35–43.Google Scholar
  48. Precha-Atsawanan, S., Uttapap, D., & Sagis, L. M. C. (2018). Linear and nonlinear rheological behavior of native and debranched waxy rice starch gels. Food Hydrocolloids, 85, 1–9.CrossRefGoogle Scholar
  49. Ptaszek, P., Meciej, K., Ptaszek, A., Kaczmarczyk, K., Krik, J., & Bieńczak, A. (2016). The analysis of the influence of xanthan gum and apple pectins on egg white protein foams using the large amplitude oscillatory shear. Food Hydrocolloids, 54, 293–301.CrossRefGoogle Scholar
  50. Reimers, M. J., & Dealy, J. M. (1996). Sliding plate rheometer studies of concentrated polystyrene solutions: Large amplitude oscillatory shear of a very high molecular weight polymer in diethyl phthalate. Journal of Rheology, 40, 167–186.CrossRefGoogle Scholar
  51. Reimers, M. J., & Dealy, J. M. (1998). Sliding plate rheometer studies of concentrated polystyrene solutions: Nonlinear viscoelasticity and wall slip of two high molecular weight polymers in tricresyl phosphate. Journal of Rheology, 42, 527–548.CrossRefGoogle Scholar
  52. Rocha, C. M. R., Souza, H. K. S., Magalhães, N. F., Andrade, C. T., & Gonçalvez, M. P. (2014). Rheological and structural characterization of agar/whey proteins insoluble complexes. Carbohydrate Polymers, 110, 345–353.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Sfakianakis, P., & Tzia, C. (2014). Conventional and innovative processing of milk for yogurt manufacture; development of texture and flavor: A review. Food, 3(1), 176–193.CrossRefGoogle Scholar
  54. Shu, R., Sun, W., Wang, T., Wang, C., Liu, X., & Tong, Z. (2013). Linear and nonlinear viscoelasticity of water-in-oil emulsions: Effect of droplet elasticity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 434, 220–228.CrossRefGoogle Scholar
  55. Sousa, A. M. M., & Goncalves, M. P. (2015). The influence of locust bean gum on native and alkali-modified agar gels. Food Hydrocolloids, 44, 461–470.Google Scholar
  56. Stadler, F. J., Leygue, A., Burhin, H., & Baily, C. (2008). The potential of large amplitude oscillatory shear to gain an insight into the long-chain branching structure of polymers. Polymer Preprints, 49, 121–122.Google Scholar
  57. Szopinski, D., & Luinstra, G. A. (2016). Viscoelastic properties of aqueous guar gum derivative solutionsunder large amplitude oscillatory shear (LAOS). Carbohydrate Polymers, 153, 312–319.PubMedCrossRefPubMedCentralGoogle Scholar
  58. van der Vaart, K., Depypere, F., De Graef, V., Schall, P., Fall, A., Bonn, D., & Dewettinck, K. (2013). Dark chocolate’s compositional effects revealed by oscillatory rheology. European Food Research and Technology, 236, 931–942.CrossRefGoogle Scholar
  59. Van Marle, M. E., Dirk, E., De Kruif, C. G., & Mellema, J. (1999). Steady-shear viscosity of stirred yogurts with varying ropiness. Journal of Rheology, 43, 1643–1662.CrossRefGoogle Scholar
  60. Wang, B., Wang, L.-J., Li, D., Wei, Q., & Adhikari, B. (2012). The rheological behavior of native and high-pressure homogenized waxy maize starch pastes. Carbohydrate Polymers, 88, 481–489.CrossRefGoogle Scholar
  61. Yazar, G., Duvarci, O., Tavman, S., & Kokini, J. L. (2016a). Effect of mixing on LAOS properties of hard wheat flour dough. Journal of Food Engineering, 190, 195–204.CrossRefGoogle Scholar
  62. Yazar, G., Duvarci, O., Tavman, S., & Kokini, J. L. (2016b). Non-linear rheological properties of soft wheat flour dough at different stages of farinograph mixing. Applied Rheology, 26, 1–11.Google Scholar
  63. Yazar, G., Duvarci, O., Tavman, S., & Kokini, J. L. (2017a). Non-linear rheological behavior of gluten-free flour dough samples and their correlation with bread properties. Journal of Cereal Science, 74, 28–36.CrossRefGoogle Scholar
  64. Yazar, G., Duvarci, O., Tavman, S., & Kokini, J. L. (2017b). LAOS behavior of the two major gluten fractions: Gliadin and glutenin. Journal of Cereal Science, 77, 201–210.CrossRefGoogle Scholar
  65. Yoshimura, A. S., & Prud’homme, R. K. (1988). Wall slip effects on dynamic oscillatory measurements. Journal of Rheology, 32, 575–584.CrossRefGoogle Scholar
  66. Yosick, J. A., Giacomin, J. A., Stewart, W. E., & Ding, F. (1998). Fluid inertia in large amplitude oscillatory shear. Rheologica Acta, 37, 365–373.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gamze Yazar
    • 1
    • 2
  • Ozlem Caglar Duvarci
    • 1
    • 3
  • Merve Yildirim Erturk
    • 1
  • Jozef L. Kokini
    • 1
    Email author
  1. 1.Food Science DepartmentPurdue UniversityWest LafayetteUSA
  2. 2.School of Food Science, University of IdahoMoscowUSA
  3. 3.Department of Chemical EngineeringIzmir Institute of TechnologyIzmirTurkey

Personalised recommendations