Advertisement

Effect of Silicate Additives on the Impact Strength of Cement Pastes

  • W. SzewczenkoEmail author
  • G. Kotsay
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 47)

Abstract

In construction, the usage of silicate additives is constantly expanding. Depending on the type and amount of mineral additives and the time of cement hydration, the structure of basic cement hydration products varies and it affects the properties of cement pastes. To ensure general-purpose cements of high quality, it is necessary to monitor constantly of activities of used mineral additives. To investigation of activities of additives used physical and chemical methods. However, during continuous production, such methods are time consuming, so, it is necessary to use some quicker way to check activities of mineral additives in cement. Therefore, in the paper, impact bending strength method is proposed for evaluation of mineral additives’ activity. However impact strength of cement pastes depended on curing conditions. Unbound water in capillary and gel pores works as shock-absorbent during impact bending tests. Therefore, impact bending tests, should be performed on samples stored in air-dry conditions.

Keywords

Paste Mineral additives Pozzolanic activity Impact bending strength 

References

  1. Shi C, Fernández-Jiménez A, Palomo A (2011) New cements for the 21st century. The pursuit of an alternative to Portland cement. Cem Concr Res 41(7):750–763CrossRefGoogle Scholar
  2. Puertas F, Torres-Carrasco M (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem Concr Res 57:95–104CrossRefGoogle Scholar
  3. Pavlů T (2018) The utilization of recycled materials for concrete and cement production. In: FIB Conference: Sustainable Concrete: Materials and Structures IOP Conference Series: Materials Science and Engineering, vol 442, pp 1–11Google Scholar
  4. Kosior-Kazberuk M (2011) Nowe Dodatki mineralne do betonu. Civ Environ Eng/Budownictwo i Inżynieria Środowiska 48(2):47–55Google Scholar
  5. Dhirendra P, Tiwari RP, Shrivastava R, Yadav RK (2019) Effective utilization of waste glass powder as the substitution of cement in making paste and mortar. Constr Build Mater 199:406–415CrossRefGoogle Scholar
  6. Hendi A, Mostofinejad D, Sedaghatdoost A, Zohrabi M, Naeimi N, Tavakolinia A (2019) Mix design of the green self-consolidating concrete: Incorporating the waste glass powder. Constr Build Mater 199:369–384CrossRefGoogle Scholar
  7. Kurda R, Brito J, Silvestre JD (2019) Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem Concr Compos 95:169–182CrossRefGoogle Scholar
  8. Siddique I, Rauf M, Khayam SU, Alamgeer M, Faisal H (2018) Effect of tempered glass fines in concrete at elevated temperature. In: ICAET-2018, IOP Conference Series: Materials Science and Engineering, vol 414, pp 1–8Google Scholar
  9. Sanytskyy M, Sobol Ch, Markiv T (2010) Modified composite cements. Lvivska Politechnika, Lviv (in Ukrainian)Google Scholar
  10. ASTM C311–02 standard test methods for sampling and testing fly ash or natural pozzolans for use in Portland-cement concreteGoogle Scholar
  11. Tkaczewska E (2011) Methods of testing pozzolanic activity of mineral additives. Materiały ceramiczne 63(3):536–541Google Scholar
  12. Bobrowski A, Gawlicki M, Jagosz M, Łój G, Nocuń-Wczelik W (2015) Cement. Metody badań. Wybrane kierunki stosowania. AGH, CracowGoogle Scholar
  13. Nonat A (2010) C-S-H i właściwości betonu. Cement Wapno Beton 6:315–326Google Scholar
  14. Kurdowski W (2010) Chemia cementu i betonu. SPC, Cracow; PWN, Warsaw (2010)Google Scholar
  15. Wójkowska J, Szewczenko W, Papieżyński M (2016) Badanie udarności standardowych zapraw cementowych. Aktualne problemy naukowo - techniczne budownictwa 201–205Google Scholar
  16. Butt J, Sychev M, Timashev V (1973) Workshop on chemical technology binders, MoscowGoogle Scholar
  17. Mielczarek D, Wojkowska J, Papieżyński M, Szewczenko W (2017) Optymalizacja parametrów oznaczania udarności dla gipsu budowlanego. Problemy techniki 32–35Google Scholar
  18. Kotsay G (2016) Pozzolanic activity diagnostics of fly ash for Portland cement. Ch. Ch. Techn. 10(3):354–360Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Civil Engineering, Mechanics and PetrochemistryWarsaw University of TechnologyPłockPoland

Personalised recommendations