Advertisement

Precipitation of Particles Using Combined High Turbulence Extraction Assisted by Ultrasound and Supercritical Antisolvent Fractionation

  • Diego T. SantosEmail author
  • Ádina L. Santana
  • M. Angela A. Meireles
  • Ademir José Petenate
  • Eric Keven Silva
  • Juliana Q. Albarelli
  • Júlio C. F. Johner
  • M. Thereza M. S. Gomes
  • Ricardo Abel Del Castillo Torres
  • Tahmasb Hatami
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

High Turbulence Extraction Assisted by Ultrasound combined with Supercritical Antisolvent Fractionation (SAF) was done to intensify the recovery of bixin and phenolic compounds from semi-defatted annatto seeds. Annatto seeds are extensively used due to its colorant properties and bioactive potential in human health. Modifications were performed in the SAF experimental apparatus in order to prevent losses of product. Results show that supercritical fractionation resulted in particle yields between 72.2–80.5%, 20–50% phenolics, and 66% bixin.

Notes

Acknowledgements

R. Abel C. Torres thanks Capes for his doctorate assistantship. Ádina L. Santana thanks Capes (88882.305824/2013-01) for her postdoctoral financial support. M. Angela A. Meireles thanks CNPq for the productivity grant (302423/2015-0). The authors acknowledge the financial support from FAPESP (process 2015/13299-0).

References

  1. 1.
    M.A. Valério, M.I.L. Ramos, J.A. Braga Neto, M.L.R. Macedo, Annatto seed residue (Bixa orellana L.): nutritional quality. Food Sci. Technol. 35, 326–330 (2015)CrossRefGoogle Scholar
  2. 2.
    V. Galindo-Cuspinera, D.C. Westhoff, S.A. Rankin, Antimicrobial properties of commercial annatto extracts against selected pathogenic, lactic acid, and spoilage microorganisms. J. Food Prot. 66(6), 1074–1078 (2003)CrossRefGoogle Scholar
  3. 3.
    C.L.C. Albuquerque, M.A.A. Meireles, Defatting of annatto seeds using supercritical carbon dioxide as a pretreatment for the production of bixin: experimental, modeling and economic evaluation of the process. J. Supercrit. Fluids 66, 86–95 (2012).  https://doi.org/10.1016/j.supflu.2012.01.004CrossRefGoogle Scholar
  4. 4.
    C.L.C. Albuquerque, Á.L. Santana, M.A.A. Meireles, Thin layer chromatographic analysis of annatto extracts obtained using supercritical fluid. Food Public Health 5(4), 127–137 (2015)CrossRefGoogle Scholar
  5. 5.
    S.C. Alcázar-Alay, J.F. Osorio-Tobón, T. Forster-Carneiro, M.A.A. Meireles, Obtaining bixin from semi-defatted annatto seeds by a mechanical method and solvent extraction: process integration and economic evaluation. Food Res. Int. 99, 393–402 (2017).  https://doi.org/10.1016/j.foodres.2017.05.032CrossRefPubMedGoogle Scholar
  6. 6.
    M. Yolmeh, M.B. Habibi Najafi, R. Farhoosh, Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem. 155, 319–324 (2014).  https://doi.org/10.1016/j.foodchem.2014.01.059CrossRefPubMedGoogle Scholar
  7. 7.
    H. Bagherian, F. Zokaee Ashtiani, A. Fouladitajar, M. Mohtashamy, Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem. Eng. Process.: Process Intensification 50(11), 1237–1243 (2011).  https://doi.org/10.1016/j.cep.2011.08.002CrossRefGoogle Scholar
  8. 8.
    R.A.C. Torres, D.T. Santos, M.A.A. Meireles, Novel extraction method to produce active solutions from plant materials. Food Public Health 5(2), 38–46 (2015)CrossRefGoogle Scholar
  9. 9.
    J.C. Johner, Á.L. Santana, M.A.A. Meireles, Fractionation of annatto extracts with carbon dioxide using a home-made equipment. Food Public Health 7(3), 69–74 (2017)Google Scholar
  10. 10.
    R.A.C. Torres, Á.L. Santana, D.T. Santos, M.A.A. Meireles, Perspectives on the application of supercritical antisolvent fractionation process for the purification of plant extracts: effects of operating parameters and patent survey. Recent Pat. Eng. 10, 121–130 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Jung, M. Perrut, Particle design using supercritical fluids: literature and patent survey. J. Supercrit. Fluids 20(3), 179–219 (2001).  https://doi.org/10.1016/S0896-8446(01)00064-XCrossRefGoogle Scholar
  12. 12.
    F. Temelli, Perspectives on the use of supercritical particle formation technologies for food ingredients. J. Supercrit. Fluids (2017).  https://doi.org/10.1016/j.supflu.2017.11.010CrossRefGoogle Scholar
  13. 13.
    IKA, Agitators, Batch and Inline Dispersing Machines, Laboratory Reactors and Pilot Plants (2014). http://www.ika.com.my/PDF/201007_Pilots_EN_IWK_USD_spreads_screen.pdf Accessed 23.12.2014
  14. 14.
    V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Oxidants and Antioxidants (1999)Google Scholar
  15. 15.
    FAO, Food and Agriculture Organization of the United Nations. In: 67th Joint FAO/WHO Expert Committee on Food Additives, vol. 3. Rome, Italy (2006), p 11Google Scholar
  16. 16.
    Á.L. Santana, M.A.A. Meireles, Coprecipitation of turmeric extracts and polyethylene glycol with compressed carbon dioxide. J. Supercrit. Fluids 125, 31–41 (2017).  https://doi.org/10.1016/j.supflu.2017.02.002CrossRefGoogle Scholar
  17. 17.
    D. Villanueva-Bermejo, F. Zahran, D. Troconis, M. Villalva, G. Reglero, T. Fornari, Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique. J. Supercrit. Fluids 120, 52–58 (2017).  https://doi.org/10.1016/j.supflu.2016.10.011CrossRefGoogle Scholar
  18. 18.
    A. Visentin, S. Rodríguez-Rojo, A. Navarrete, D. Maestri, M.J. Cocero, Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. J. Food Eng. 109(1), 9–15 (2012).  https://doi.org/10.1016/j.jfoodeng.2011.10.015CrossRefGoogle Scholar
  19. 19.
    M.A. Meneses, G. Caputo, M. Scognamiglio, E. Reverchon, R. Adami, Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction. J. Food Eng. 163, 45–53 (2015).  https://doi.org/10.1016/j.jfoodeng.2015.04.025CrossRefGoogle Scholar
  20. 20.
    J.F. Osorio-Tobón, P.I.N. Carvalho, M.A. Rostagno, A.J. Petenate, M.A.A. Meireles, Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process. J. Supercrit. Fluids 108, 26–34 (2016).  https://doi.org/10.1016/j.supflu.2015.09.012CrossRefGoogle Scholar
  21. 21.
    L. Baldino, G. Della Porta, L.S. Osseo, E. Reverchon, R. Adami, Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. J. Supercrit. Fluids 133, 65–69 (2018).  https://doi.org/10.1016/j.supflu.2017.09.026CrossRefGoogle Scholar
  22. 22.
    G.L. Zabot, M.A.A. Meireles, On-line process for pressurized ethanol extraction of onion peels extract and particle formation using supercritical antisolvent. J. Supercrit. Fluids 110, 230–239 (2016).  https://doi.org/10.1016/j.supflu.2015.11.024CrossRefGoogle Scholar
  23. 23.
    M.C. Guamán-Balcázar, A. Montes, C. Pereyra, E.M. de la Ossa, Precipitation of mango leaves antioxidants by supercritical antisolvent process. J. Supercrit. Fluids 128, 218–226 (2017).  https://doi.org/10.1016/j.supflu.2017.05.031CrossRefGoogle Scholar
  24. 24.
    C. Chinnarasu, A. Montes, M.T.F. Ponce, L. Casas, C. Mantell, C. Pereyra, E.J.M. de la Ossa, Precipitation of antioxidant fine particles from Olea europaea leaves using supercritical antisolvent process. J. Supercrit. Fluids 97, 125–132 (2015).  https://doi.org/10.1016/j.supflu.2014.11.008CrossRefGoogle Scholar
  25. 25.
    J.-J. Wu, L.-Y. Shen, M.-C. Yin, Y.-S. Cheng, Supercritical carbon dioxide anti-solvent micronization of lycopene extracted and chromatographic purified from Momordica charantia L. aril. J. Taiwan Inst. Chem. Eng. 80, 64–70 (2017).  https://doi.org/10.1016/j.jtice.2017.08.006CrossRefGoogle Scholar
  26. 26.
    E. Reverchon, R. Adami, G. Caputo, I. De Marco, Spherical microparticles production by supercritical antisolvent precipitation: interpretation of results. J. Supercrit. Fluids 47(1), 70–84 (2008).  https://doi.org/10.1016/j.supflu.2008.06.002CrossRefGoogle Scholar
  27. 27.
    Z. Liu, L. Yang, Antisolvent precipitation for the preparation of high polymeric procyanidin nanoparticles under ultrasonication and evaluation of their antioxidant activity in vitro. Ultrason. Sonochem. 43, 208–218 (2018).  https://doi.org/10.1016/j.ultsonch.2018.01.019CrossRefPubMedGoogle Scholar
  28. 28.
    A. Montes, L. Wehner, C. Pereyra, E.J. Martínez de la Ossa, Precipitation of submicron particles of rutin using supercritical antisolvent process. J. Supercrit. Fluids 118, 1–10 (2016).  https://doi.org/10.1016/j.supflu.2016.07.020CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diego T. Santos
    • 1
    Email author
  • Ádina L. Santana
    • 2
  • M. Angela A. Meireles
    • 3
  • Ademir José Petenate
    • 4
  • Eric Keven Silva
    • 5
  • Juliana Q. Albarelli
    • 6
  • Júlio C. F. Johner
    • 7
  • M. Thereza M. S. Gomes
    • 8
  • Ricardo Abel Del Castillo Torres
    • 9
  • Tahmasb Hatami
    • 10
  1. 1.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  2. 2.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  3. 3.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  4. 4.Process ImprovementEDTICampinasBrazil
  5. 5.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  6. 6.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  7. 7.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  8. 8.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  9. 9.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  10. 10.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil

Personalised recommendations