CT Myocardial Perfusion Imaging

  • Aaron SoEmail author


Coronary artery disease (CAD) is a condition in which blood supply to the heart muscle (myocardium) is reduced as a result of plaque formation within one or more coronary arteries. CAD is one of the leading causes of morbidity and mortality in the world. Due to its high sensitivity and negative predictive value, coronary CT angiography (CCTA) is routinely used for detecting or excluding obstructive coronary artery stenosis in symptomatic patients with suspected CAD. However, anatomical assessment with CCTA alone is not sufficient to determine if a stenosis (lumen narrowing) is functionally significant (flow-limiting), which is critical for decision-making on coronary revascularization. CT myocardial perfusion imaging (CT-MPI) is a technique that can provide functional assessment of a stenosis in an epicardial coronary artery through imaging the first-pass circulation of iodinated contrast agent in the downstream myocardium. CT-MPI can be further classified into “static” or “dynamic,” depending on whether the contrast passage in the myocardium is monitored at a single or multiple time points. The merit of dynamic CT-MPI is that absolute myocardial blood flow values can be derived with advanced analytic algorithms to achieve a more reliable functional assessment of CAD. In this chapter, the theoretical basis of quantitative myocardial perfusion measurement with dynamic CT-MPI and the practical issues of implementation of CT-MPI are reviewed. Examples of clinical application of CT-MPI are also provided for illustration.


Dynamic contrast-enhanced imaging Quantitative myocardial perfusion measurement Tracer kinetic modeling Coronary artery disease Functional assessment CT perfusion 


  1. 1.
    Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology. 1980;137(3):679–86.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Obach V, et al. Multimodal CT-assisted thrombolysis in patients with acute stroke: a cohort study. Stroke. 2011;42(4):1129–31.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Silvennoinen HM, et al. CT perfusion identifies increased salvage of tissue in patients receiving intravenous recombinant tissue plasminogen activator within 3 hours of stroke onset. AJNR Am J Neuroradiol. 2008;29(6):1118–23.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Aviv RI, et al. Alberta stroke program early CT scoring of CT perfusion in early stroke visualization and assessment. AJNR Am J Neuroradiol. 2007;28(10):1975–80.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jain R, et al. First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery. 2007;61(4):778–86; discussion 786–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Nakashige A, et al. Quantitative measurement of hepatic portal perfusion by multidetector row CT with compensation for respiratory misregistration. Br J Radiol. 2004;77(921):728–34.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Meijerink MR, et al. The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefitinib in cancer patients. Eur Radiol. 2007;17(7):1700–13.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Jiang T, et al. Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST). Investig Radiol. 2012;47(1):11–7.CrossRefGoogle Scholar
  9. 9.
    George RT, et al. Diagnostic performance of combined noninvasive coronary angiography and myocardial perfusion imaging using 320-MDCT: the CT angiography and perfusion methods of the CORE320 multicenter multinational diagnostic study. AJR Am J Roentgenol. 2011;197(4):829–37.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    So A, et al. Non-invasive assessment of functionally relevant coronary artery stenoses with quantitative CT perfusion: preliminary clinical experiences. Eur Radiol. 2012;22(1):39–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Bastarrika G, et al. Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Investig Radiol. 2010;45(6):306–13.CrossRefGoogle Scholar
  12. 12.
    Ho KT, et al. Stress and rest dynamic myocardial perfusion imaging by evaluation of complete time-attenuation curves with dual-source CT. JACC Cardiovasc Imaging. 2010;3(8):811–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Prokop M. New challenges in MDCT. Eur Radiol. 2005;15(Suppl 5):E35–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Page M, et al. Comparison of 4 cm Z-axis and 16 cm Z-axis multidetector CT perfusion. Eur Radiol. 2010;20(6):1508–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Flohr TG, Raupach R, Bruder H. Cardiac CT: how much can temporal resolution, spatial resolution, and volume coverage be improved? J Cardiovasc Comput Tomogr. 2009;3(3):143–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954;6(12):731–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Bassingthwaighte JB, Knopp TJ, Anderson DU. Flow estimation by indicator dilution (bolus injection). Circ Res. 1970;27(2):277–91.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pardridge WM, et al. Blood-brain barrier: interface between internal medicine and the brain. Ann Intern Med. 1986;105(1):82–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand. 1963;58:292–305.PubMedCrossRefGoogle Scholar
  20. 20.
    Hamilton WFM, Moore JW, Kinsman JM, Spurling RG. Simultaneous determination of the pulmonary and systemic circulation times in man and of a figure related to cardiac output. Am J Phys. 1928;84:338–44.CrossRefGoogle Scholar
  21. 21.
    Stephenson JL. Theory of the measurement of blood flow by the dilution of an indicator. Bull Math Biophys. 1948;10(3):117–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Gobbel GT, Cann CE, Fike JR. Measurement of regional cerebral blood flow using ultrafast computed tomography. Theoretical aspects. Stroke. 1991;22(6):768–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol. 1983;18(1):94–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42(11):3323–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    de Vries HE, et al. The blood-brain barrier in neuroinflammatory diseases. Pharmacol Rev. 1997;49(2):143–55.PubMedGoogle Scholar
  26. 26.
    Mullani NA, Gould KL. First-pass measurements of regional blood flow with external detectors. J Nucl Med. 1983;24(7):577–81.PubMedGoogle Scholar
  27. 27.
    Bindschadler M, et al. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT. Phys Med Biol. 2014;59(7):1533–56.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ishida M, et al. Underestimation of myocardial blood flow by dynamic perfusion CT: explanations by two-compartment model analysis and limited temporal sampling of dynamic CT. J Cardiovasc Comput Tomogr. 2016;10(3):207–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Ostergaard L, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996;36(5):715–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Wintermark M, et al. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: a validation study. AJNR Am J Neuroradiol. 2001;22(5):905–14.PubMedPubMedCentralGoogle Scholar
  31. 31.
    So A, et al. Technical note: evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging. Med Phys. 2016;43(8):4821.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Gamel J, et al. Pitfalls in digital computation of the impulse response of vascular beds from indicator-dilution curves. Circ Res. 1973;32(4):516–23.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ostergaard L, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med. 1996;36(5):726–36.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Groothuis DR, et al. A method to quantitatively measure transcapillary transport of iodinated compounds in canine brain tumors with computed tomography. J Cereb Blood Flow Metab. 1991;11(6):939–48.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Groothuis DR, et al. Quantitative measurements of capillary transport in human brain tumors by computed tomography. Ann Neurol. 1991;30(4):581–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5(4):584–90.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. theoretical derivation. J Cereb Blood Flow Metab. 1998;18(12):1365–77.PubMedCrossRefGoogle Scholar
  39. 39.
    Gill PE, Murray W, Wright MH. Practical optimization. London: Academic; 1981.Google Scholar
  40. 40.
    Johnson JA, Wilson TA. A model for capillary exchange. Am J Phys. 1966;210(6):1299–303.CrossRefGoogle Scholar
  41. 41.
    Ho KT, et al. Dynamic CT myocardial perfusion measurements of resting and hyperaemic blood flow in low-risk subjects with 128-slice dual-source CT. Eur Heart J Cardiovasc Imaging. 2015;16(3):300–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Pontone G, et al. Incremental diagnostic value of stress computed tomography myocardial perfusion with whole-heart coverage CT scanner in intermediate- to high-risk symptomatic patients suspected of coronary artery disease. JACC Cardiovasc Imaging. 2019;12(2):338–49.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    George RT, et al. Computed tomography myocardial perfusion imaging with 320-row detector computed tomography accurately detects myocardial ischemia in patients with obstructive coronary artery disease. Circ Cardiovasc Imaging. 2012;5(3):333–40.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32–61.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wintermark M, et al. Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. AJNR Am J Neuroradiol. 2004;25(5):720–9.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Sahani DV, et al. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue--initial experience. Radiology. 2007;243(3):736–43.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ippolito D, et al. Hepatocellular carcinoma treated with transarterial chemoembolization: dynamic perfusion-CT in the assessment of residual tumor. World J Gastroenterol. 2010;16(47):5993–6000.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Claussen CD, et al. Bolus geometry and dynamics after intravenous contrast medium injection. Radiology. 1984;153(2):365–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Miles KA. Perfusion CT for the assessment of tumour vascularity: which protocol? Br J Radiol. 2003;76(Spec 1):S36–42.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Schoellnast H, et al. Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush: influence on magnitude and uniformity of the contrast column. Investig Radiol. 2004;39(1):20–6.CrossRefGoogle Scholar
  51. 51.
    Hopper KD, et al. Thoracic spiral CT: delivery of contrast material pushed with injectable saline solution in a power injector. Radiology. 1997;205(1):269–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Brooks RA, Di Chiro G. Beam hardening in x-ray reconstructive tomography. Phys Med Biol. 1976;21(3):390–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Haage P, et al. Reduction of contrast material dose and artifacts by a saline flush using a double power injector in helical CT of the thorax. AJR Am J Roentgenol. 2000;174(4):1049–53.PubMedCrossRefGoogle Scholar
  54. 54.
    Coursey CA, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics. 2010;30(4):1037–55.PubMedCrossRefGoogle Scholar
  55. 55.
    Wintermark M, et al. Using 80 kVp versus 120 kVp in perfusion CT measurement of regional cerebral blood flow. AJNR Am J Neuroradiol. 2000;21(10):1881–4.PubMedGoogle Scholar
  56. 56.
    Shankar JJ, Lum C, Sharma M. Whole-brain perfusion imaging with 320-MDCT scanner: reducing radiation dose by increasing sampling interval. AJR Am J Roentgenol. 2010;195(5):1183–6.PubMedCrossRefGoogle Scholar
  57. 57.
    McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics. 2002;22(6):1541–53.PubMedCrossRefGoogle Scholar
  58. 58.
    McCollough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys. 1999;26(11):2223–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Bamberg F, et al. Accuracy of dynamic computed tomography adenosine stress myocardial perfusion imaging in estimating myocardial blood flow at various degrees of coronary artery stenosis using a porcine animal model. Investig Radiol. 2012;47(1):71–7.CrossRefGoogle Scholar
  60. 60.
    Greif M, et al. CT stress perfusion imaging for detection of haemodynamically relevant coronary stenosis as defined by FFR. Heart. 2013;99(14):1004–11.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee TY, Chhem RK. Impact of new technologies on dose reduction in CT. Eur J Radiol. 2010;76(1):28–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Roberts HC, et al. Multisection dynamic CT perfusion for acute cerebral ischemia: the “toggling-table” technique. AJNR Am J Neuroradiol. 2001;22(6):1077–80.PubMedGoogle Scholar
  63. 63.
    Wiesmann M, et al. Dose reduction in dynamic perfusion CT of the brain: effects of the scan frequency on measurements of cerebral blood flow, cerebral blood volume, and mean transit time. Eur Radiol. 2008;18(12):2967–74.PubMedCrossRefGoogle Scholar
  64. 64.
    Primak AN, et al. A technical solution to avoid partial scan artifacts in cardiac MDCT. Med Phys. 2007;34(12):4726–37.PubMedCrossRefGoogle Scholar
  65. 65.
    Meinel JA, et al. Reduction of half-scan shading artifact based on full-scan correction. Acad Radiol. 2006;13(1):55–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Eldevik K, Nordhoy W, Skretting A. Relationship between sharpness and noise in CT images reconstructed with different kernels. Radiat Prot Dosim. 2010;139(1–3):430–3.CrossRefGoogle Scholar
  67. 67.
    Jia X, et al. GPU-based fast low-dose cone beam CT reconstruction via total variation. J Xray Sci Technol. 2011;19(2):139–54.PubMedGoogle Scholar
  68. 68.
    Chou CY, et al. A fast forward projection using multithreads for multirays on GPUs in medical image reconstruction. Med Phys. 2011;38(7):4052–65.PubMedCrossRefGoogle Scholar
  69. 69.
    Yan H, et al. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: cone/ring artifact correction and multiple GPU implementation. Med Phys. 2014;41(11):111912.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Thibault JB, et al. A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys. 2007;34(11):4526–44.CrossRefGoogle Scholar
  71. 71.
    Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Inform Theor IEEE Trans. 2006;52(2):489–509.CrossRefGoogle Scholar
  72. 72.
    Donoho DL. Compressed sensing. Inform Theor IEEE Trans. 2006;52(4):1289–306.CrossRefGoogle Scholar
  73. 73.
    Lauzier PT, Tang J, Chen GH. Prior image constrained compressed sensing: implementation and performance evaluation. Med Phys. 2012;39(1):66–80.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    LaRoque SJ, Sidky EY, Pan X. Accurate image reconstruction from few-view and limited-angle data in diffraction tomography. J Opt Soc Am A Opt Image Sci Vis. 2008;25(7):1772–82.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Enjilela E, et al. Ultra-low dose quantitative CT myocardial perfusion imaging with sparse-view dynamic acquisition and image reconstruction: a feasibility study. Int J Cardiol. 2018;254:272–81.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen GH, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys. 2008;35(2):660–3.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Budoff MJ, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Meijboom WB, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135–44.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    van Werkhoven JM, et al. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol. 2009;53(7):623–32.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Gould KL. Does coronary flow trump coronary anatomy? JACC Cardiovasc Imaging. 2009;2(8):1009–23.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hoffmann U, et al. Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology. 2004;231(3):697–701.PubMedCrossRefGoogle Scholar
  82. 82.
    Rogers IS, et al. Comparison of postprocessing techniques for the detection of perfusion defects by cardiac computed tomography in patients presenting with acute ST-segment elevation myocardial infarction. J Cardiovasc Comput Tomogr. 2010;4(4):258–66.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;50(7):1076–87.PubMedCrossRefGoogle Scholar
  84. 84.
    Orn S, et al. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J. 2009;30(16):1978–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Miller TD, et al. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation. 1995;92(3):334–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Burns RJ, et al. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol. 2002;39(1):30–6.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Imaging ProgramLawson Health Research InstituteLondonCanada

Personalised recommendations