Advertisement

CT Perfusion Techniques and Applications in Stroke and Cancer

  • Ting-Yim LeeEmail author
  • Dae Myoung Yang
  • Fiona Li
  • Raanan Marants
Chapter

Abstract

CT perfusion is a functional imaging modality that has gained increasing use in imaging acute ischemic stroke patients to select patients for appropriate treatment with either thrombolysis or thrombectomy and in imaging cancer to confirm diagnosis and monitor progress of treatment. The advantages of CT perfusion are around-the-clock accessibility and easy implementation in most imaging departments. The discussion in this chapter will focus on four areas: (1) physiological models of contrast transport in tissue, (2) deconvolution techniques to derive functional parameters from the physiological models, (3) optimization of scanning protocols with respect to radiation dose and accuracy of derived functional parameters, and (4) application examples in stroke and cancer.

Keywords

Physiological modeling Deconvolution Singular value decomposition Delay-insensitive deconvolution Blood flow Blood volume Mean transit time Permeability surface product 

References

  1. 1.
    Johnson W, Onuma O, Owolabi M, Sachdev S. Stroke: a global response is needed. Bull World Health Organ. 2016;94(9):634A–5A.CrossRefGoogle Scholar
  2. 2.
    Koton S, Schneider ALC, Rosamond WD, et al. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA – J Am Med Assoc. 2014;312(3):259–68.CrossRefGoogle Scholar
  3. 3.
    Yang Q, Botto LD, Erickson JD, et al. Improvement in stroke mortality in Canada and the United States, 1990 to 2002. Circulation. 2006;113(10):1335–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Lakshminarayan K, Berger AK, Fuller CC, et al. Trends in 10-year survival of patients with stroke hospitalized between 1980 and 2000: the Minnesota stroke survey. Stroke. 2014;45(9):2575–81.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Howard G, Goff DC. Population shifts and the future of stroke: forecasts of the future burden of stroke. Ann N Y Acad Sci. 2012;1268:14–20.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hankey GJ, Jamrozik K, Broadhurst RJ, Forbes S, Anderson CS. Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989–1990. Stroke. 2002;33(4):1034–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Krueger H, Koot J, Hall RE, O’Callaghan C, Bayley M, Corbett D. Prevalence of individuals experiencing the effects of stroke in Canada: trends and projections. Stroke. 2015;46(8):2226–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Gloede TD, Halbach SM, Thrift AG, Dewey HM, Pfaff H, Cadilhac DA. Long-term costs of stroke using 10-year longitudinal data from the north East Melbourne stroke incidence study. Stroke. 2014;45(11):3389–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Miles K, Eastwood JD, Konig M, editors. Multidetector computed tomography in cerebrovascular disease: CT perfusion imaging. Abingdon: Informa Healthcare; 2007.Google Scholar
  10. 10.
    Miles K, Charnsangavei C, Cuenod CA, editors. Multidetector computed tomography in oncology: CT perfusion imaging. Abingdon: Informa Healthcare; 2007.Google Scholar
  11. 11.
    Saver JL, Goyal M, Bonafe A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–30.CrossRefGoogle Scholar
  13. 13.
    Campbell BCV, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–18.CrossRefGoogle Scholar
  14. 14.
    Berkhemer OA, Fransen PSS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.CrossRefGoogle Scholar
  15. 15.
    Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372(24):2296–306.CrossRefGoogle Scholar
  16. 16.
    Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis. Q J Nucl Med. 2003;47:171–87.PubMedGoogle Scholar
  18. 18.
    García-Figueiras R, Goh VJ, Padhani AR, Baleato-González S, Garrido M, León L, Gómez-Caamaño A. CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol. 2013;200:8–19.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ng CS, Zhang Z, Lee SI, Marques HS, Burgers K, Lee TY, et al. CT perfusion as an early biomarker of treatment efficacy in advanced ovarian cancer: an ACRIN and GOG study. Clin Cancer Res. 2017;23:3684–91.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954;6:731–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Robert GW, Larson KB, Spaeth EE. The interpretation of mean transit time measurements for multiphase tissue systems. J Theor Biol. 1973;39:447–75.CrossRefGoogle Scholar
  22. 22.
    Klotz E, König M. Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. Eur J Radiol. 1999;30(3):170–84.PubMedCrossRefGoogle Scholar
  23. 23.
    St Lawrence K, Lee T-Y. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain I. Theoretical derivation. J Cereb Blood Flow Metab. 1998;18:1365–77.PubMedCrossRefGoogle Scholar
  24. 24.
    Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Phsyiol Scand. 1963;58:292–305.CrossRefGoogle Scholar
  25. 25.
    Rapoport SI. Blood-brain barrier in physiology and medicine. New York: Raven Press; 1976. p. 20.Google Scholar
  26. 26.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Metab. 1983;3:1–7.CrossRefGoogle Scholar
  27. 27.
    Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Metab. 1985;5:584–90.CrossRefGoogle Scholar
  28. 28.
    Gill PE, Murray W, Wright MH. Practical optimization. London: Academic; 1982.Google Scholar
  29. 29.
    Philips DL. A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comp Math. 1962;9:84–90.CrossRefGoogle Scholar
  30. 30.
    Tikhonov AN. Regularizations of uncorrectly posed problems. Soviet Math. 1963;4:1624–9.Google Scholar
  31. 31.
    Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996;36:715–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Calamante F, Gadian DG, Alan Connelly A. Quanti.cation of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Mag Res Med. 2003;50:1237–47.CrossRefGoogle Scholar
  33. 33.
    Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med. 2003;50(1):164–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee TY, Murphy B. Implementing deconvolution analysis for perfusion CT. In: Miles K, Charnsangavei C, Cuenod CA, editors. Multidetector computed tomography in oncology: CT perfusion imaging. Abingdon: Informa Healthcare; 2007.Google Scholar
  35. 35.
    Wu O, Østergaard L, Koroshetz WJ, Schwamm LH, O’Donnell J, Schaefer PW, Rosen BR, Weisskoff RM, Sorensen AG. Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging. Magn Res Med. 2003;50:856–64.CrossRefGoogle Scholar
  36. 36.
    Smith MR, Lu H, Trochet S, Frayne R. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Res Med. 2004;51:631–4.CrossRefGoogle Scholar
  37. 37.
    Ibaraki M, Shimosegawa E, Toyoshima H, Takahashi K, Miura S, Kanno I. Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab. 2005;25:378–90.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lee TY. Method and apparatus for calculating blood flow parameters. US Patent Office. 2005. 6898453.Google Scholar
  39. 39.
    Aviv RI, d’Esterre CD, Murphy BD, Hopyan JJ, Buck B, Mallia G, Li V, Zhang L, Symons SP, Lee TY. Hemorrhagic transformation of ischemic stroke: prediction with CT perfusion. Radiology. 2009;250(3):867–77.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    d’Esterre CD, Boesen ME, Ahn SH, Pordeli P, Najm M, et al. Time-dependent computed tomographic perfusion thresholds for patients with acute ischemic stroke. Stroke. 2015;46(12):3390–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Eskildsen SF, Gyldensted L, Nagenthiraja K, Nielsen RB, Hansen MB, Dalby RB, et al. Increased cortical capillary transit time heterogeneity in Alzheimer’s disease: a DSC-MRI perfusion study. Neurobiol Aging. 2017;50:107–18.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Østergaard L, Engedal TS, Aamand R, Mikkelsen R, Iversen NK, Anzabi M, et al. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury. J Cereb Blood Flow Metab. 2014;34(10):1585–98.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    d’Esterre CD, Aviv RI, Lee TY. The evolution of the cerebral blood volume abnormality in patients with ischemic stroke: a CT perfusion study. Acta Radiol. 2012;53(4):461–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lee TY, Ellis RJ, Dunscombe PB, McClarty B, Hodson DI, Kroeker MA, et al. Quantitative computed tomography of the brain with xenon enhancement: a phantom study with the GE9800 scanner. Phys Med Biol. 1990;35:925–35.PubMedCrossRefGoogle Scholar
  45. 45.
    Wintermark M, Maeder P, Verdun FR, Thiran JP, Valley JF, Schnyder P, et al. Using 80 kVp versus 120 kVp in perfusion CT measurement of regional cerebral blood flow. AJNR Am J Neuroradiol. 2000;21:1881–4.PubMedGoogle Scholar
  46. 46.
    Hirata M, Sugawara Y, Fukutomi Y, Oomoto K, Murase K, Miki H, et al. Measurement of radiation dose in cerebral CT perfusion study. Radiat Med. 2005;23:97–103.PubMedGoogle Scholar
  47. 47.
    Huda W, Scalzetti EM, Levin G. Technique factors and image quality as functions of patient weight at abdominal CT. Radiology. 2000;217:430–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Li ZL, Li H, Zhang K, Li WJ, Chen X, Wu B, et al. Improvement of image quality and radiation dose of CT perfusion of the brain by means of low-tube voltage (70 KV). Eur Radiol. 2014;24(8):1906–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm--initial clinical experience. Radiology. 2010;254(1):145–53.PubMedCrossRefGoogle Scholar
  50. 50.
    Murphy A, So A, Lee TY, Symons S, Jakubovic R, Zhang L, Aviv RI. Low dose CT perfusion in acute ischemic stroke. Neuroradiology. 2014;56(12):1055–62.PubMedCrossRefGoogle Scholar
  51. 51.
    Enjilela E, Lee TY, Hsieh J, Murjoomdar A, Stewart E, Dekaban M, Su F, So A. Ultra-low-dose sparse-view quantitative CT liver perfusion imaging. Tomography. 2017;3(4):175–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Enjilela E, Lee TY, Hsieh J, Wisenberg G, Teefy P, Yadegari A, Bagur R, Islam A, Branch K, So A. Ultra-low dose quantitative CT myocardial perfusion imaging with sparse-view dynamic acquisition and image reconstruction: a feasibility study. Int J Cardiol. 2018;254:272–81.PubMedCrossRefGoogle Scholar
  53. 53.
    National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.CrossRefGoogle Scholar
  54. 54.
    Hacke W, Kaste M, Fieschi C, et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS). JAMA. 1995;274:1017–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Fisher M, Adams RD. Observations on brain embolism with special reference to the mechanism of hemorrhagic infarction. J Neuropathol Exp Neurol. 1951;10:92–4.PubMedGoogle Scholar
  56. 56.
    Larrue V, von Kummer R, del Zoppo G, Bluhmki E. Hemorrhagic transformation in acute ischemic stroke: potential contributing factors in the European Cooperative Acute Stroke Study. Stroke. 1997;28:957–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Molina CA, Alvarez-Sabin J, Montaner J, et al. Thrombolysis-related hemorrhagic infarction: a marker of early reperfusion, reduced infarct size, and improved outcome in patients with proximal middle cerebral artery occlusion. Stroke. 2002;33:1551–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Larrue V, von Kummer RR, Muller A, Bluhmki E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke. 2001;32:438–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, WAKE-UP Investigators et al, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, the EXTEND Investigators, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795–803.PubMedCrossRefGoogle Scholar
  61. 61.
    Neumann-Haefelin C, Brinker G, Uhlenkuken U, Pillekamp F, Hossmann KA, Hoehn M. Prediction of hemorrhagic transformation after thrombolytic therapy of clot embolism: an MRI investigation in rat brain. Stroke. 2002;33:1392–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Jordan JD, Powers WJ. Cerebral autoregulation and acute ischemic stroke. Am J Hypertens. 2012;25(9):946–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A, EPITHET investigators, et al. Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299–309.PubMedCrossRefGoogle Scholar
  64. 64.
    Murphy MJ, Tichauer KM, Sun L, Chen X, Lee TY. Mean transit time as an index of cerebral perfusion pressure in experimental systemic hypotension. Physiol Meas. 2011;32(4):395–405.PubMedCrossRefGoogle Scholar
  65. 65.
    Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94:153–6.CrossRefGoogle Scholar
  66. 66.
    Biolato M, Marrone G, Racco S, Di Stasi C, Miele L, Gasbarrini G, et al. Transarterial chemoembolization (tace) for unresectable HCC: a new life begins? Eur Rev Med Pharmacol Sci. 2010;14:356–62.PubMedGoogle Scholar
  67. 67.
    Laeseke PF, Frey TM, Brace CL, Sampson LA, Winter TC 3rd, Ketzler JR, et al. Multiple-electrode radiofrequency ablation of hepatic malignancies: initial clinical experience. AJR Am J Roentgenol. 2007;188:1485–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Liang P, Wang Y. Microwave ablation of hepatocellular carcinoma. Oncology. 2007;72(Suppl 1):124–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Chiandussi L, Greco F, Sardi G, Vaccarino A, Ferraris CM, Curti B. Estimation of hepatic arterial and portal venous blood flow by direct catheterization of the vena porta through the umbilical cord in man: preliminary results. Acta Hepatosplenol. 1968;15:166–71.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ting-Yim Lee
    • 1
    Email author
  • Dae Myoung Yang
    • 2
  • Fiona Li
    • 2
  • Raanan Marants
    • 2
  1. 1.Imaging Program, Lawson Health Research Institute & Robarts Research Institute, Medical Biophysics, Medical Imaging and OncologyThe University of Western OntarioLondonCanada
  2. 2.Medical BiophysicsThe University of Western OntarioLondonCanada

Personalised recommendations