Advertisement

CT as a Functional Imaging Technique

  • Jonathan W. Revels
  • Achille Mileto
Chapter

Abstract

As the growing human population continues to age, there is an increasing incidence of chronic diseases, such as cancer and coronary artery disease. Traditionally, conditions such as these have required multimodality imaging (i.e., CT, MRI, PET/CT, and ultrasound) to both initially diagnose and monitor for response after initiation of therapy. However, the wide availability, growing technologic advances, and ongoing research have allowed for CT to leap forward from a modality traditionally grounded in purely anatomic imaging to one with the capability of yielding clinically relevant functional information on par with that of other radiologic exams. In this chapter, we provide an overview of CT sub-modalities and applications highlighting and placing emphasis on how CT imaging can transition from a merely anatomic to a functional imaging modality.

Keywords

CT Dual-energy CT Functional imaging Oncologic imaging Material decomposition Cellular tracking 

Notes

Acknowledgments

Thank you to Dr. Ryan O’Malley for contributing a CT case of pancreatic tumor perfusion.

References

  1. 1.
    Townsend DW. Combined PET/CT: the historical perspective. Semin Ultrasound CT MR. 2008;29(4):232–5.  https://doi.org/10.1053/j.sult.2008.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kapoor V, McCook BM, Torok FS. An introduction to PET-CT imaging. Radiographics. 2004;24(2):523–43.  https://doi.org/10.1148/rg.242025724.CrossRefPubMedGoogle Scholar
  3. 3.
    Welle CL, Cullen EL, Peller PJ, Lowe VJ, Murphy RC, Johnson GB, et al. 11C-choline PET/CT in recurrent prostate cancer and nonprostatic neoplastic processes. Radiographics. 2016;36(1):279–92.  https://doi.org/10.1148/rg.2016150135.CrossRefPubMedGoogle Scholar
  4. 4.
    Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics. 2017;37(5):1483–503.  https://doi.org/10.1148/rg.2017170056.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shen C, Liu Z, Guan M, Song J, Lian Y, Wang S, et al. 2D and 3D CT radiomics features prognostic performance comparison in non-small cell lung cancer. Transl Oncol. 2017;10(6):886–94.  https://doi.org/10.1016/j.tranon.2017.08.007.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Garcia-Figueiras R, Goh VJ, Padhani AR, Baleato-Gonzalez S, Garrido M, Leon L, et al. CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol. 2013;200(1):8–19.  https://doi.org/10.2214/ajr.11.8476.CrossRefPubMedGoogle Scholar
  7. 7.
    Kim SH, Kamaya A, Willmann JK. CT perfusion of the liver: principles and applications in oncology. Radiology. 2014;272(2):322–44.  https://doi.org/10.1148/radiol.14130091.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation appropriate use criteria task force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2010;122(21):e525–55.  https://doi.org/10.1161/CIR.0b013e3181fcae66.CrossRefPubMedGoogle Scholar
  9. 9.
    Han R, Sun K, Lu B, Zhao R, Li K, Yang X. Diagnostic accuracy of coronary CT angiography combined with dual-energy myocardial perfusion imaging for detection of myocardial infarction. Exp Ther Med. 2017;14(1):207–13.  https://doi.org/10.3892/etm.2017.4485.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yang DH, Kim YH. CT myocardial perfusion imaging: current status and future perspectives. Int J Cardiovasc Imaging. 2017;33(7):1009–20.  https://doi.org/10.1007/s10554-017-1102-6.CrossRefPubMedGoogle Scholar
  11. 11.
    Rossi A, Merkus D, Klotz E, Mollet N, de Feyter PJ, Krestin GP. Stress myocardial perfusion: imaging with multidetector CT. Radiology. 2014;270(1):25–46.  https://doi.org/10.1148/radiol.13112739.CrossRefPubMedGoogle Scholar
  12. 12.
    Duran Karaduman B, Akcay M, Ayhan H, Kasapkara HA, Guney MC, Durmaz T, et al. Comparison between fractional flow reserve and visual assessment for moderate coronary artery stenosis. Kardiol Pol. 2017;75(6):545–53.  https://doi.org/10.5603/KP.a2017.0037.CrossRefPubMedGoogle Scholar
  13. 13.
    Lotfi A, Jeremias A, Fearon WF, Feldman MD, Mehran R, Messenger JC, et al. Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography: a consensus statement of the Society of Cardiovascular Angiography and Interventions. Cathet Cardiovasc Interv: Off J Soc Card Angiography Interv. 2014;83(4):509–18.  https://doi.org/10.1002/ccd.25222.CrossRefGoogle Scholar
  14. 14.
    Tesche C, Cecco CND, Albrecht MH, Duguay TM, II RRB, Litwin SE, et al. Coronary CT angiography–derived fractional flow reserve. Radiology. 2017;285(1):17–33.  https://doi.org/10.1148/radiol.2017162641.CrossRefPubMedGoogle Scholar
  15. 15.
    Hayes SA, Pietanza MC, O’Driscoll D, Zheng J, Moskowitz CS, Kris MG, et al. Comparison of CT volumetric measurement with RECIST response in patients with lung cancer. Eur J Radiol. 2016;85(3):524–33.  https://doi.org/10.1016/j.ejrad.2015.12.019.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gavrielides MA, Kinnard LM, Myers KJ, Petrick N. Noncalcified lung nodules: volumetric assessment with thoracic CT. Radiology. 2009;251(1):26–37.  https://doi.org/10.1148/radiol.2511071897.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Winer-Muram HT, Jennings SG, Meyer CA, Liang Y, Aisen AM, Tarver RD, et al. Effect of varying CT section width on volumetric measurement of lung tumors and application of compensatory equations. Radiology. 2003;229(1):184–94.  https://doi.org/10.1148/radiol.2291020859.CrossRefPubMedGoogle Scholar
  18. 18.
    Samei E, Robins M, Chen B, Agasthya G. Estimability index for volume quantification of homogeneous spherical lesions in computed tomography. J Med Imaging (Bellingham, Wash). 2018;5(3):031404.  https://doi.org/10.1117/1.Jmi.5.3.031404.CrossRefGoogle Scholar
  19. 19.
    Almeida RR, Lo GC, Patino M, Bizzo B, Canellas R, Sahani DV. Advances in pancreatic CT imaging. Am J Roentgenol. 2018;211(1):52–66.  https://doi.org/10.2214/AJR.17.18665.CrossRefGoogle Scholar
  20. 20.
    Planz VB, Posielski NM, Lubner MG, Li K, Chen G-H, Nakada SY, et al. Ultra-low-dose limited renal CT for volumetric stone surveillance: advantages over standard unenhanced CT. Abdom Radiol. 2018;  https://doi.org/10.1007/s00261-018-1719-5.CrossRefGoogle Scholar
  21. 21.
    Selby MG, Vrtiska TJ, Krambeck AE, McCollough CH, Elsherbiny HE, Bergstralh EJ, et al. Quantification of asymptomatic kidney stone burden by computed tomography for predicting future symptomatic stone events. Urology. 2015;85(1):45–50.  https://doi.org/10.1016/j.urology.2014.08.031.CrossRefPubMedGoogle Scholar
  22. 22.
    Patino M, Prochowski A, Agrawal MD, Simeone FJ, Gupta R, Hahn PF, et al. Material separation using dual-energy CT: current and emerging applications. Radiographics. 2016;36(4):1087–105.  https://doi.org/10.1148/rg.2016150220.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yeh BM, FitzGerald PF, Edic PM, Lambert JW, Colborn RE, Marino ME, et al. Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies. Adv Drug Deliv Rev. 2017;113:201–22.  https://doi.org/10.1016/j.addr.2016.09.001.CrossRefPubMedGoogle Scholar
  24. 24.
    Fornaro J, Leschka S, Hibbeln D, Butler A, Anderson N, Pache G, et al. Dual- and multi-energy CT: approach to functional imaging. Insights Imaging. 2011;2(2):149–59.  https://doi.org/10.1007/s13244-010-0057-0.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R, et al. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug Chem. 2017;28(6):1581–97.  https://doi.org/10.1021/acs.bioconjchem.7b00194.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Raatschen HJ, Fu Y, Brasch RC, Pietsch H, Shames DM, Yeh BM. In vivo monitoring of angiogenesis inhibitory treatment effects by dynamic contrast-enhanced computed tomography in a xenograft tumor model. Investig Radiol. 2009;44(5):265–70.  https://doi.org/10.1097/RLI.0b013e31819f1b60.CrossRefGoogle Scholar
  27. 27.
    Bhavane R, Badea C, Ghaghada KB, Clark D, Vela D, Moturu A, et al. Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent. Circ Cardiovasc Imaging. 2013;6(2):285–94.  https://doi.org/10.1161/circimaging.112.000119.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol. 2015;6:256.  https://doi.org/10.3389/fphar.2015.00256.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Oncol. 2011;8(11):677–88.  https://doi.org/10.1038/nrclinonc.2011.141.CrossRefPubMedGoogle Scholar
  30. 30.
    Srivastava AK, Bulte JW. Seeing stem cells at work in vivo. Stem Cell Rev. 2014;10(1):127–44.  https://doi.org/10.1007/s12015-013-9468-x.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kim J, Arifin DR, Muja N, Kim T, Gilad AA, Kim H, et al. Multifunctional capsule-in-capsules for immunoprotection and trimodal imaging. Angew Chem Int Ed Engl. 2011;50(10):2317–21.  https://doi.org/10.1002/anie.201007494.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Menk RH, Schultke E, Hall C, Arfelli F, Astolfo A, Rigon L, et al. Gold nanoparticle labeling of cells is a sensitive method to investigate cell distribution and migration in animal models of human disease. Nanomed: Nanotechnol Biol Med. 2011;7(5):647–54.  https://doi.org/10.1016/j.nano.2011.01.010.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jonathan W. Revels
    • 1
  • Achille Mileto
    • 2
  1. 1.Department of Radiology, Division of Body and Thoracic ImagingUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Radiology, Division of Body ImagingUniversity of WashingtonSeattleUSA

Personalised recommendations