CT Material Identification

  • Federica Vernuccio
  • Daniele Marin


Technical advances in CT imaging have improved ability to discriminate different materials, going beyond the attenuation imaging provided by most current systems. Nowadays, dual-energy CT systems allow for material identification and quantification providing qualitative and quantitative information about tissue composition and contrast agent distribution. This chapter explores the general principles of material decomposition analysis, as well as the technical implementations of single- and dual-source CT systems and the clinical advantages and prospects.


Dual-energy CT Fat quantification Iodine quantification Virtual non-contrast Photon-counting CT 


  1. 1.
    Patino M, Prochowski A, Agrawal MD, et al. Material separation using dual-energy CT: current and emerging applications. Radiographics. 2016;36:1087–105.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology. 2015;276:637–53.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Alvarez RE, Macovski A. Energy-selective reconstructions in x-ray computerized tomography. Phys Med Biol. 1976;21:733–44.CrossRefGoogle Scholar
  4. 4.
    Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271:327–42.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hyodo T, Yada N, Hori M, et al. Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: clinical evaluation. Radiology. 2017;283:108–18.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sauter AP, Muenzel D, Dangelmaier J, et al. Dual-layer spectral computed tomography: virtual non-contrast in comparison to true non-contrast images. Eur J Radiol. 2018;104:108–14.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ho LM, Yoshizumi TT, Hurwitz LM, et al. Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols. Acad Radiol. 2009;16:1400–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Mileto A, Barina A, Marin D, et al. Virtual monochromatic images from dual-energy multidetector CT: variance in CT numbers from the same lesion between single-source projection-based and dual-source image-based implementations. Radiology. 2016;279:269–77.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Schabel C, Patel B, Harring S, et al. Renal lesion characterization with spectral CT: determining the optimal energy for virtual monoenergetic reconstruction. Radiology. 2018;287:874–83.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fu W, Marin D, Ramirez-Giraldo JC, et al. Optimizing window settings for improved presentation of virtual monoenergetic images in dual-energy computed tomography. Med Phys. 2017;44:5686–96.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Patel BN, Marin D. Strategies to improve image quality on dual-energy computed tomography. Radiol Clin N Am. 2018;56:641–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Marin D, Pratts-Emanuelli JJ, Mileto A, et al. Interdependencies of acquisition, detection, and reconstruction techniques on the accuracy of iodine quantification in varying patient sizes employing dual-energy CT. Eur Radiol. 2015;25:679–86.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Willemink MJ, Persson M, Pourmorteza A, Pelc NJ, Fleischmann D. Photon-counting CT: technical principles and clinical prospects. Radiology. 2018;289:293–312.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Taguchi K, Iwanczyk JS. Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys. 2013;40:100901. Scholar
  15. 15.
    Muenzel D, Lo GC, Yu HS, et al. Material density iodine images in dual-energy CT: detection and characterization of hypervascular liver lesions compared to magnetic resonance imaging. Eur J Radiol. 2017;95:300–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Shuman WP, Green DE, Busey JM, et al. Dual-energy liver CT: effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. Am J Roentgenol. 2014;203:601–6.CrossRefGoogle Scholar
  17. 17.
    Marin D, Nelson RC, Samei E, et al. Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection–initial clinical experience. Radiology. 2009;251:771–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ascenti G, Sofia C, Mazziotti S, et al. Dual-energy CT with iodine quantification in distinguishing between bland and neoplastic portal vein thrombosis in patients with hepatocellular carcinoma. Clin Radiol. 2016;71:938.e1–9.CrossRefGoogle Scholar
  19. 19.
    Patel BN, Rosenberg M, Vernuccio F, et al. Characterization of small incidental indeterminate hypoattenuating hepatic lesions: added value of single-phase contrast-enhanced dual-energy CT material attenuation analysis. Am J Roentgenol. 2018;211:571–9.CrossRefGoogle Scholar
  20. 20.
    Dai X, Schlemmer HP, Schmidt B, et al. Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol. 2013;82:327–34.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Vandenbroucke F, Van Hedent S, Van Gompel G, et al. Dual-energy CT after radiofrequency ablation of liver, kidney, and lung lesions: a review of features. Insights Imaging. 2015;6:363–79.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Raptopoulos V, Karellas A, Bernstein J, Reale FR, Constantinou C, Zawacki JK. Value of dual-energy CT in differentiating focal fatty infiltration of the liver from low-density masses. Am J Roentgenol. 1991;157:721–5.CrossRefGoogle Scholar
  23. 23.
    Horowitz JM, Venkatesh SK, Ehman RL, et al. Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol. 2017;42:2037–53.CrossRefGoogle Scholar
  24. 24.
    Sofue K, Tsurusaki M, Mileto A, et al. Dual-energy computed tomography for non-invasive staging of liver fibrosis: accuracy of iodine density measurements from contrast-enhanced data. Hepatol Res. 2018; [Epub ahead of print].PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Luo XF, Xie XQ, Cheng S, et al. Dual-energy CT for patients suspected of having liver iron overload: can virtual iron content imaging accurately quantify liver iron content? Radiology. 2015;277:95–103.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Marin D, Nelson RC, Barnhart H, et al. Detection of pancreatic tumors, image quality, and radiation dose during the pancreatic parenchymal phase: effect of a low-tube-voltage, high-tube-current CT technique – preliminary results. Radiology. 2010;256:450–9. Scholar
  27. 27.
    Macari M, Spieler B, Kim D, et al. Dual-source dual-energy MDCT of pancreatic adenocarcinoma: initial observations with data generated at 80 kVp and at simulated weighted-average 120 kVp. Am J Roentgenol. 2010;194:W27–32.CrossRefGoogle Scholar
  28. 28.
    Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV. Oncologic applications of dual-energy CT in the abdomen. Radiographics. 2014;34:589–612. Scholar
  29. 29.
    Vernuccio F, Meyer M, Mileto A, Marin D. Use of dual-energy computed tomography for evaluation of genitourinary diseases. Urol Clin North Am. 2018;45:297–310.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Patel BN, Bibbey A, Choudhury KR, Leder RA, Nelson RC, Marin D. Characterization of small (< 4 cm) focal renal lesions: diagnostic accuracy of spectral analysis using single-phase contrast-enhanced dual-energy CT. Am J Roentgenol. 2017;209:815–25.CrossRefGoogle Scholar
  31. 31.
    Mileto A, Nelson RC, Samei E, et al. Impact of dual-energy multi-detector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement: in vitro and in vivo study. Radiology. 2014;272:767–76.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Mileto A, Marin D, Alfaro-Cordoba M, et al. Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology. 2014;273:813–20.CrossRefGoogle Scholar
  33. 33.
    Marin D, Davis D, Roy Choudhury K, et al. Characterization of small focal renal lesions: diagnostic accuracy with single-phase contrast-enhanced dual-energy CT with material attenuation analysis compared with conventional attenuation measurements. Radiology. 2017;284:737–47.PubMedCrossRefGoogle Scholar
  34. 34.
    Mileto A, Nelson RC, Marin D, Roy Choudhury K, Ho LM. Dual-energy multidetector CT for the characterization of incidental adrenal nodules: diagnostic performance of contrast-enhanced material density analysis. Radiology. 2015;274:445–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Ho LM, Marin D, Neville AM, et al. Characterization of adrenal nodules with dual-energy CT: can virtual unenhanced attenuation values replace true unenhanced attenuation values? Am J Roentgenol. 2012;198:840–5.CrossRefGoogle Scholar
  36. 36.
    Fulwadhva UP, Wortman JR, Sodickson AD. Use of dual-energy CT and iodine maps in evaluation of bowel disease. Radiographics. 2016;36:393–406.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wortman JR, Uyeda JW, Fulwadhva UP, Sodickson AD. Dual-energy CT for abdominal and pelvic trauma. Radiographics. 2018;38:586–602.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Stein PD, Fowler SE, Goodman LR, et al. Multidetector computed tomography for acute pulmonary embolism. N Engl J Med. 2006;354:2317–27.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Weidman EK, Plodkowski AJ, Halpenny DF, et al. Dual-energy CT angiography for detection of pulmonary emboli: incremental benefit of iodine maps. Radiology. 2018;11:180594. Scholar
  40. 40.
    Kang MJ, Park CM, Lee CH, Goo JM, Lee HJ. Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics. 2010;30:685–98.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JA, Kalra MK. Dual-energy CT: spectrum of thoracic abnormalities. Radiographics. 2016;36:38–52.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Bongartz T, Glazebrook KN, Kavros SJ, et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis. 2015;74:1072–7.CrossRefGoogle Scholar
  43. 43.
    Yang P, Wu G, Chang X. Diagnostic accuracy of dual-energy computed tomography in bone marrow edema with vertebral compression fractures: a meta-analysis. Eur J Radiol. 2018;99:124–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281:690–707.CrossRefPubMedGoogle Scholar
  45. 45.
    Kuno H, Onaya H, Iwata R, et al. Evaluation of cartilage invasion by laryngeal and hypopharyngeal squamous cell carcinoma with dual-energy CT. Radiology. 2012;265:488–96.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Federica Vernuccio
    • 1
    • 2
  • Daniele Marin
    • 1
  1. 1.Department of RadiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical SpecialtiesUniversity of PalermoPalermoItaly

Personalised recommendations