Advertisement

Role of Ancillary Tests in Breast Fine Needle Aspiration Biopsy Cytopathology

  • Francisco Beca
  • Fernando SchmittEmail author
Chapter
  • 92 Downloads

Abstract

In this chapter, we review the main current applications of ancillary techniques in breast fine needle aspiration biopsy (FNAB) cytology. Contemporary ancillary techniques used in combination with FNAB of the breast range from “classic” immunocytochemistry (ICC) to modern molecular techniques, in particular, next-generation sequencing (NGS). The applications reviewed in this chapter include the primary diagnosis of a breast lesion, the identification of the breast as a primary source of a metastatic lesion, the evaluation of breast prognostic and predictive markers, and the tracking of tumor evolution. This chapter aims to elucidate the complexity of the many challenges traditionally associated with the application of ancillary techniques to FNAB of the breast and provide insights into some of the most cutting-edge and clinical useful application scenarios.

Keywords

Breast FNAB Ancillary techniques Immunocytochemistry Molecular tests 

References

  1. 1.
    Dong J, Ly A, Arpin R, Ahmed Q, Brachtel E. Breast fine needle aspiration continues to be relevant in a large academic medical center: experience from Massachusetts General Hospital. Breast Cancer Res Treat. 2016;158:297–305.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Tse G, Tan PH, Schmitt F. Special ancillary techniques: Immunohistochemistry. In: Needle F, editor. Aspiration cytology of the breast: atlas of cyto-histologic correlates. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 159–68.Google Scholar
  3. 3.
    Schmitt F, Davidson B. Breast carcinoma. In: Serous effusions: etiology, diagnosis, prognosis and therapy. London: Springer; 2012. p. 69–77.CrossRefGoogle Scholar
  4. 4.
    Schmitt FC. Molecular cytopathology and flow cytometry: pre-analytical procedures matter. Cytopathology. 2011;22:355–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Schmitt F, Cochand-Priollet B, Toetsch M, Davidson B, Bondi A, Vielh P. Immunocytochemistry in Europe: results of the European Federation of Cytology Societies (EFCS) Inquiry. Cytopathology. 2011;22:238–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Maxwell P, Salto-Tellez M. Validation of immunocytochemistry as a morphomolecular technique. Cancer Cytopathol. 2016;124:540–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Schmitt F, Vielh P. Fine-needle aspiration cytology samples: a good source of material for evaluating biomarkers in breast cancer. Histopathology. 2015;66:314–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Gerhard R, Schmitt FC. Liquid-based cytology in fine-needle aspiration of breast lesions: a review. Acta Cytol. 2014;58:533–42.PubMedGoogle Scholar
  9. 9.
    Marinšek Z, Nolde N, Kardum-Skelin I, Nizzoli R, Onal B, Rezanko T, Tani E, et al. Multinational study of oestrogen and progesterone receptor immunocytochemistry on breast carcinoma fine needle aspirates. Cytopathology. 2013;24:7–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Filho AL, Gonçalves A, Martinho O, Schmitt F, Reis R. Liquid-based cytology in DNA-based molecular research: viability and potential application. Anal Quant Cytol Histol. 2009;31:395–400.PubMedGoogle Scholar
  11. 11.
    Gorman BK, Kosarac O, Chakraborty S, Schwartz MR, Mody DR. Comparison of breast carcinoma prognostic /predictive biomarkers on cell blocks obtained by various methods: cellient, formalin and thrombin. Acta Cytol. 2012;56:289–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Skoog L, Tani E. Immunocytochemistry: an indispensable technique in routine cytology. Cytopathology. 2011;22:215–29.PubMedCrossRefGoogle Scholar
  13. 13.
    Colasacco C, Sharon Mount S, Leiman G. Documentation of immunocytochemistry controls in the cytopathologic literature: a meta-analysis of 100 journal articles. Diagn Cytopathol. 2011;39:245–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Elmore J, Longton G, Carney P, Geller B, Onega T, Tosteson A, Nelson H, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA. 2015;313:1122–32.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rakha EA, Miligy I, Gorringe KL, Toss MS, Green AR, Fox SB, Schmitt FC, et al. Invasion in breast lesions: the role of the epithelial-stroma barrier. Histopathology. 2018;72(7):1075–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Aiad H, Kandil M, Moshira Wahed M, Abdou A, Hemida A. Diagnostic role of p63 immunostaining in fine needle aspiration cytology of different breast lesions. Acta Cytologica. 2011;55:149–57.PubMedCrossRefGoogle Scholar
  17. 17.
    Reis-Filho J, Milanezi F, Amendoeira I, Albergaria A, Schmitt F. p63 staining of myoepithelial cells in breast fine needle aspirates: a study of its role in differentiating in situ from invasive ductal carcinomas of the breast. J Clin Pathol. 2002;55:936–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hoshikawa S, Sano T, Hirato J, Oyama T, Fukuda T. Immunocytochemical analysis of p63 and 34βE12 in fine needle aspiration cytology specimens for breast lesions: a potentially useful discriminatory marker between intraductal papilloma and ductal carcinoma in situ. Cytopathology. 2016;27:108–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Reis-Filho JS, Milanezi F, Amendoeira I, Albergaria A, Schmitt FC. Distribution of p63, a novel myoepithelial marker, in fine-needle aspiration biopsies of the breast: an analysis of 82 samples. Cancer. 2003;99:172–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Dufloth R, Xavier-Junior J, Neto F, Santos K, Schmitt F. Fine needle aspiration cytology of lobular breast carcinoma and its variants. Acta Cytol. 2015;59:37–42.CrossRefGoogle Scholar
  21. 21.
    Dabbs DJ, Schnitt SJ, Geyer FC, Weigelt B, Baehner FL, Decker T, et al. Lobular neoplasia of the breast revisited with emphasis on the role of E-cadherin immunohistochemistry. Am J Surg Pathol. 2013;37:1–11.CrossRefGoogle Scholar
  22. 22.
    Tan B, Acs G, Apple S, Badve S, Bleiweiss I, Brogi E, et al. Phyllodes tumours of the breast: a consensus review. Histopathology. 2016;68:5–21.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tsang JYS, Mendoza P, Lam CCF, et al. Involvement of a- and b-catenins and E-cadherin in the development of mammary phyllodes tumours. Histopathology. 2012;61:667–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Hayes MJ, Thomas D, Emmons A, Giordano TJ, Kleer CG. Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res. 2008;14:4038–44.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Reis-Filho JS, Milanezi F, Paredes J, Silva P, Pereira EM, Maeda SA, de Carvalho LV, Schmitt FC. Novel and classic myoepithelial/stem cell markers in metaplastic carcinomas of the breast. Appl Immunohistochem Mol Morphol. 2003;11:1–8.PubMedGoogle Scholar
  26. 26.
    Reis-Filho JS, Schmitt FC. p63 expression in sarcomatoid/metaplastic carcinomas of the breast. Histopathology. 2003;42:94–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Cimino-Mathews A, Sharma R, Illei PB, Vang R, Argani P. A subset of malignant phyllodes tumors express p63 and p40: a diagnostic pitfall in breast core needle biopsies. Am J Surg Pathol. 2014;38:1689–96.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Noronha Y, Raza A, Hutchins B, et al. CD34, CD117, and Ki- 67 expression in phyllodes tumor of the breast: an immunohistochemical study of 33 cases. Int J Surg Pathol. 2011;19:152–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Yan Z, Gidley J, Horton D, Roberson J, Eltoum IE, Chhieng DC. Diagnostic utility of mammaglobin and GCDFP-15 in the identification of metastatic breast carcinoma in fluid specimens. Diagn Cytopathol. 2009;37:475–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Chia S, Yun S, Thike A, Cheok P, Tan P. Utility of mammaglobin and gross cystic disease fluid protein-15 (GCDFP-15) in confirming a breast origin for recurrent tumors. Breast. 2010;19:355–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Cimino-Mathews A, Subhawong A, Illei P, Sharma R, Halushka M, Vang R, Fetting J, Park B, Argani P. GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas. Hum Pathol. 2013;44:1341–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kawaguchi R, Lu F-I, Kaplan R, Liu Y, Chadwick P, Chen Z, Brogi E, Shin S. In search of the ideal immunopanel to distinguish metastatic mammary carcinoma from primary lung carcinoma: a tissue microarray study of 207 cases. Appl Immunohistochem Mol Morphol. 2014;22:266–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Inigo E, Gallardo A, D’Angelo E, Mozos A, Lerma E, Prat J. Simultaneous carcinomas of the breast and ovary: utility of Pax-8, WT-1, and GATA3 for distinguishing independent primary tumors from metastases. Int J Gynecol Pathol. 2015;34:257–65.CrossRefGoogle Scholar
  34. 34.
    Lew M, Pang J, Fields K, Roh M. The utility of GATA3 immunohistochemistry in the evaluation of metastatic breast carcinomas in malignant effusions. Cancer (Cancer Cytopathol). 2015;123:576–81.CrossRefGoogle Scholar
  35. 35.
    El Hag M, Ha J, Farag R, El Hag A, Michael C. Utility of GATA-3 in the work-up of breast adenocarcinoma and its differential diagnosis in serous effusions: a cell-block microarray study. Diagn Cytopathol. 2016;44:731–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med. 2010;134:907–22.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138:241–56.PubMedCrossRefGoogle Scholar
  38. 38.
    Cardoso F, Narbeck N, Fallowfield L, Kyriadkides S, Senkus E, on behalf of the ESMO Guideline Working Group. Locally recurrent or metastatic breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow up. Ann Oncol. 2012;23(Suppl 7):vii11–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Amir E, Miller N, Geddie W, Freedman O, Kassam F, Simmons C, Oldfield M, et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol. 2012;30:587–92.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Simmons C, Miller N, Geddie W, Gianfelice D, Oldfield M, Dranitsaris G, Clemons MJ. Does confirmatory tumor biopsy alter the management of breast cancer patients with distant metastases? Ann Oncol. 2009;20:1499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wilking U, Karlsson E, Skoog L, Hatschek T, Lidbrink E, Elmberger G, Johansson H, Lindström L, Bergh J. HER2 status in a population-derived breast cancer cohort: discordances during tumor progression. Breast Cancer Res Treat. 2011;125:553–61.PubMedCrossRefGoogle Scholar
  42. 42.
    Beca F, Schmitt F. Growing indication for FNA to study and analyze tumor heterogeneity at metastatic sites. Cancer Cytopathol. 2014;122:504–11.PubMedCrossRefGoogle Scholar
  43. 43.
    Kos Z, Dabbs D. Biomarker assessment and molecular testing for prognostication in breast cancer. Histopathology. 2016;68:70–85.PubMedCrossRefGoogle Scholar
  44. 44.
    Bardou V-J, Arpino G, Elledge RM, Osborne CK, Clark GM. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol. 2003;21:1973–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Viale G, Regan MM, Maiorano E, et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1-98. J Clin Oncol. 2007;25:3846–52.PubMedCrossRefGoogle Scholar
  46. 46.
    Hefti MM, Hu R, Knoblauch NW, et al. Estrogen receptor negative/ progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res. 2013;15:R68.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sauer T, Ebeltoft K, Pedersen MK, Karesen R. Liquid based material from fine needle aspirates from breast carcinomas offers the possibility of long-time storage without significant loss of immunoreactivity of estrogen and progesterone receptors. Cytojournal. 2010;7:24.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bueno Angela SP, Viero RM, Soares CT. Fine needle aspirate cell blocks are reliable for detection of hormone receptors and HER-2 by immunohistochemistry in breast carcinoma. Cytopathology. 2013;24:26–32.PubMedCrossRefGoogle Scholar
  49. 49.
    Martins D, Beca F, Schmitt F. Metastatic breast cancer: mechanisms and opportunities for cytology. Cytopathology. 2014;25:225–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Penault-Llorca F, Coudry R, Hanna W, Osamura R, Ruschoff J, Viale G. Experts’ opinion: recommendations for retesting breast cancer metastases for HER2 and hormone receptor status. Breast. 2013;22:200–2.PubMedCrossRefGoogle Scholar
  51. 51.
    Gu M, Ghafari S, Zhao M. Fluorescence in situ hybridization for HER-2/neu amplification of breast carcinoma in archival fine needle aspiration biopsy specimens. Acta Cytol. 2005;49:471–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Dowsett M, Smith I, Robertson J, et al. Endocrine therapy, new biologicals, and new study designs for presurgical studies in breast cancer. J Natl Cancer Inst Monogr. 2011;2011:120–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Polley M-YC, Leung SCY, Gao D, et al. An international study to increase concordance in Ki67 scoring. Mod Pathol. 2015;28:778–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Daramola AO, Odubanjo MO, Obiajulu FJ, Ikeri NZ, Banjo AA. Correlation between fine-needle aspiration cytology and histology for palpable breast masses in a Nigerian Tertiary Health Institution. Int J Breast Cancer. 2015;2015:742573.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ljung BM, Drejet A, Chiampi N, Jeffrey J, Goodson WH 3rd, Chew K, Moore DH 2nd, Miller TR. Diagnostic accuracy of fine-needle aspiration biopsy is determined by physician training in sampling technique. Cancer. 2001;93:263–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Schmitt FC, Longatto-Filho A, Valent A, Vielh P. Molecular techniques in cytopathology practice. J Clin Pathol. 2008;61:258–67.PubMedCrossRefGoogle Scholar
  57. 57.
    Di Lorito A, Schmitt FC. (Cyto)pathology and sequencing: next (or last) generation? Diagn Cytopathol. 2012;40:459–61.PubMedCrossRefGoogle Scholar
  58. 58.
    Pauli C, Puca L, Mosquera JM, Robinson BD, Beltran H, Rubin MA, et al. An emerging role for cytopathology in precision oncology. Cancer Cytopathol. 2016;124:167–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Beca F, Polyak K. Intratumor heterogeneity in breast cancer. In: Stearns V, editor. Advances in experimental medicine and biology. Cham: Springer International Publishing; 2016. p. 169–89.Google Scholar
  60. 60.
    Beca F, Beck AH. Precision cancer diagnostics: tracking genomic evolution in clinical trials. PLoS Med. 2016.  https://doi.org/10.1371/journal.pmed.1002177.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    DeRose YS, Wang G, Lin Y-C, Bernard PS, Buys SS, Ebbert MTW, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Shaaban A, Schmitt F. Practical application of molecular techniques in diagnostic histopathology and cytopathology and clinical management. In: JMS B, Shaaban A, Schmitt F, editors. Molecular pathology: a practical guide for the surgical pathologist and cytopathologist. Cambridge, MA: Cambridge University Press; 2015. p. 22–8.Google Scholar
  63. 63.
    Beca F, Santos R, Vieira D, Zeferino L, Dufloth R, Schmitt F. Primary relapse site pattern in women with triple-negative breast cancer. Pathol Res Pract. 2014;210:571–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Hookim K, Roh MH, Willman J, Placido J, Weigelin HC, Fields KL, et al. Application of immunocytochemistry and BRAF mutational analysis to direct smears of metastatic melanoma. Cancer Cytopathol. 2012;120:52–61.PubMedCrossRefGoogle Scholar
  65. 65.
    JMS B. An introduction to molecular pathology. In: JMS B, Shaaban A, Schmitt F, editors. Molecular pathology: a practical guide for the surgical pathologist and cytopathologist. Cambridge, MA: Cambridge University Press; 2015. p. 1–9.Google Scholar
  66. 66.
    Wei S, Lieberman D, Morrissette JJD, Baloch ZW, Roth DB, McGrath C. Using “residual” FNA rinse and body fluid specimens for next-generation sequencing: an institutional experience. Cancer Cytopathol. 2016;124:324–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Cancer Genome Atlas Network, Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.CrossRefGoogle Scholar
  68. 68.
    Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Beca F, Pereira M, Cameselle-Teijeiro JF, Martins D, Schmitt F. Altered PPP2R2A and Cyclin D1 expression defines a subgroup of aggressive luminal-like breast cancer. BMC Cancer. 2015;15.  https://doi.org/10.1186/s12885-015-1266-1.
  70. 70.
    Ali HR, Rueda OM, Chin S-F, Curtis C, Dunning MJ, Aparicio SAJR, et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol. 2014;15:431.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Annaratone L, Marchiò C, Renzulli T, Castellano I, Cantarella D, Isella C, et al. High-throughput molecular analysis from leftover of fine needle aspiration cytology of mammographically detected breast cancer. Transl Oncol. 2012.  https://doi.org/10.1593/tlo.11343.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Pusztai L, Ayers M, Stec J, Clark E, Hess K, Stivers D, et al. Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin Cancer Res. 2003;9:2406–15.PubMedGoogle Scholar
  73. 73.
    Garuti A, Rocco I, Cirmena G, Chiaramondia M, Baccini P, Calabrese M, et al. Quantitative Real Time PCR assessment of hormonal receptors and HER2 status on fine-needle aspiration pre-operatory specimens from a prospectively accrued cohort of women with suspect breast malignant lesions. Gynecol Oncol. 2014;132:389–96.PubMedCrossRefGoogle Scholar
  74. 74.
    Di Palma S, Collins N, Bilous M, Sapino A, Mottolese M, Kapranos N, et al. A quality assurance exercise to evaluate the accuracy and reproducibility of chromogenic in situ hybridisation for HER2 analysis in breast cancer. J Clin Pathol. 2008;61:757–60.PubMedCrossRefGoogle Scholar
  75. 75.
    Wasserman BE, Carvajal-Hausdorf DE, Ho K, Wong W, Wu N, Chu VC, et al. High concordance of a closed-system, RT-qPCR breast cancer assay for HER2 mRNA, compared to clinically determined immunohistochemistry, fluorescence in situ hybridization, and quantitative immunofluorescence. Lab Investig. 2017;97:1521.PubMedCrossRefGoogle Scholar
  76. 76.
    Wong E, Wu N, Acca B, Dias H. GeneXpert® breast cancer STRAT4 assay demonstrates high concordance of ESR1, PgR, HER2, and Ki67 with central IHC and FISH testing in FFPE breast tumor tissues. The Breast. 2018;32:S49.CrossRefGoogle Scholar
  77. 77.
    Lakhani SR. WHO classification of tumours of the breast. International Agency for Research on Cancer; 2012. Available from: https://books.google.de/books?id=J8qipwAACAAJ.
  78. 78.
    Shinagawa T, Tadokoro M, Kitamura H, Mizuguchi K, Kushima M. Secretory carcinoma of the breast: correlation of aspiration cytology and histology. Acta Cytol. 1994;38:909–14.PubMedGoogle Scholar
  79. 79.
    Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2:367–76.PubMedCrossRefGoogle Scholar
  80. 80.
    Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci. 2009;106:18740–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Tse G, Tan PH, Schmitt F. Carcinoma and variants. In: Fine needle aspiration cytology of the breast: atlas of cyto-histologic correlates. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 131–49.CrossRefGoogle Scholar
  82. 82.
    Holst F, Moelans CB, Filipits M, Singer CF, Simon R, van Diest PJ. On the evidence for ESR1 amplification in breast cancer. Nat Rev Cancer. 2012;12:149.PubMedCrossRefGoogle Scholar
  83. 83.
    Holst F, Stahl PR, Ruiz C, Hellwinkel O, Jehan Z, Wendland M, et al. Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet. 2007;39:655–60.PubMedCrossRefGoogle Scholar
  84. 84.
    Tomita S, Zhang Z, Nakano M, Ibusuki M, Kawazoe T, Yamamoto Y, et al. Estrogen receptor alpha gene ESR1 amplification may predict endocrine therapy responsiveness in breast cancer patients. Cancer Sci. 2009;100:1012–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Lin C-H, Liu JM, Lu Y-S, Lan C, Lee W-C, Kuo K-T, et al. Clinical significance of ESR1 gene copy number changes in breast cancer as measured by fluorescence in situ hybridisation. J Clin Pathol. 2013;66:140–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep. 2013;4:1116–30.PubMedCrossRefGoogle Scholar
  87. 87.
    Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015;12:573–83.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013;45:1439–45.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Robinson DR, Wu Y-M, Vats P, Su F, Lonigro RJ, Cao X, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013;45:1446–51.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell. 2018;34(3):427–438.e6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wilking U, Karlsson E, Skoog L, Hatschek T, Lidbrink E, Elmberger G, et al. HER2 status in a population-derived breast cancer cohort: discordances during tumor progression. Breast Cancer Res Treat. 2011;125:553–61.PubMedCrossRefGoogle Scholar
  92. 92.
    Goh G, Schmid R, Guiver K, Arpornwirat W, Chitapanarux I, Ganju V, et al. Clonal evolutionary analysis during HER2 blockade in HER2-positive inflammatory breast cancer: a phase II open-label clinical trial of afatinib +/− vinorelbine. PLoS Med. 2016;13:e1002136.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Beca F, Schmitt FC. Ancillary tests in breast cytology: a practical guide. Acta Cytol. 2019;63:1–12.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PathologyStanford University School of MedicineStanfordUSA
  2. 2.Institute of Molecular Pathology and Immunology of Porto University (IPATIMUP), Medical Faculty of Porto UniversityPortoPortugal

Personalised recommendations