Advertisement

Symbolic-Numeric Implementation of the Four Potential Method for Calculating Normal Modes: An Example of Square Electromagnetic Waveguide with Rectangular Insert

  • A. A. Tiutiunnik
  • D. V. DivakovEmail author
  • M. D. Malykh
  • L. A. Sevastianov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)

Abstract

In this paper, the Maple computer algebra system is used to construct a symbolic-numeric implementation of the method for calculating normal modes of square closed waveguides in a vector formulation. The method earlier proposed by Malykh et al. [M.D. Malykh, L.A. Sevastianov, A.A. Tiutiunnik, N.E. Nikolaev. On the representation of electromagnetic fields in closed waveguides using four scalar potentials // Journal of Electromagnetic Waves and Applications, 32 (7), 886–898 (2018)] will be referred to as the method of four potentials. The Maple system is used at all stages of treating the system of differential equations for four potentials: the generation of the Galerkin basis, the substitution of approximate solution into the system under study, the formulation of a computational problem, and its approximate solution.

Thanks to the symbolic-numeric implementation of the method, it is possible to carry out calculations for a large number of basis functions of the Galerkin decomposition with reasonable computation time and then to investigate the convergence of the method and verify it, which is done in the present paper, too.

Keywords

Computer algebra system Symbolic-numeric method Waveguide Maxwell equations Four potentials method Normal modes Incomplete galerkin method 

References

  1. 1.
    Malykh, M.D., Sevastianov, L.A., Tiutiunnik, A.A., Nikolaev, N.E.: On the representation of electromagnetic fields in closed waveguides using four scalar potentials. J. Electromagn. Waves Appl. 32(7), 886–898 (2018)CrossRefGoogle Scholar
  2. 2.
    Divakov, D.V., Lovetskiy, K.P., Malykh, M.D., Tiutiunnik, A.A.: The application of Helmholtz decomposition method to investigation of multicore fibers and their application in next-generation communications systems. Commun. Comput. Inf. Sci. 919, 469–480 (2018)Google Scholar
  3. 3.
    Gusev, A.A., et al.: Symbolic-numerical algorithms for solving the parametric self-adjoint 2D elliptic boundary-value problem using high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 151–166. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_12CrossRefGoogle Scholar
  4. 4.
    Gusev, A.A., et al.: Symbolic-numerical algorithm for generating interpolation multivariate hermite polynomials of high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 134–150. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_11CrossRefGoogle Scholar
  5. 5.
    Shapeev, V.P., Vorozhtsov, E.V.: The method of collocations and least residuals combining the integral form of collocation equations and the matching differential relations at the solution of pdes. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 346–361. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_25CrossRefGoogle Scholar
  6. 6.
    Sevastyanov, L.A., Sevastyanov, A.L., Tyutyunnik, A.A.: Analytical calculations in maple to implement the method of adiabatic modes for modelling smoothly irregular integrated optical waveguide structures. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 419–431. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10515-4_30CrossRefzbMATHGoogle Scholar
  7. 7.
    Bertolazzi, E., Biral, F., Da Lio, M.: Symbolic-numeric efficient solution of optimal control problems for multibody systems. J. Comput. Appl. Math. 185(2), 404–421 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gutnik, S.A., Sarychev, V.A.: Symbolic-numerical methods of studying equilibrium positions of a gyrostat satellite. Program. Comput. Softw. 40(3), 143–150 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical analysis of Equilibrium solutions in a restricted four-body problem. Program. Comput. Softw. 36(2), 68–74 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numerical optimization and realization of the method of collocations and least residuals for solving the Navier-stokes equations. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 473–488. Springer, Cham (2016)Google Scholar
  11. 11.
    Semin, L., Shapeev, V.: Constructing the numerical method for Navier-stokes equations using computer algebra system. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 367–378. Springer, Berlin (2005)Google Scholar
  12. 12.
    Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the collocations and least residuals method for the solution of 3D Navier-stokes equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 381–392. Springer, Cham (2013)Google Scholar
  13. 13.
    Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numeric implementation of the method of collocations and least squares for 3D Navier-stokes equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 321–333. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)zbMATHGoogle Scholar
  15. 15.
    Fletcher, C.A.J.: Computational Galerkin Methods. Springer-Verlag, Heidelberg (1984)CrossRefGoogle Scholar
  16. 16.
    Adams, M.J.: An Introduction to Optical Waveguides. Wiley, New York (1981)Google Scholar
  17. 17.
    Marcuse, D.: Light Transmission Optics. Van Nostrand, New York (1974)Google Scholar
  18. 18.
    Tamir, T.: Guided-Wave Optoelectronics. Springer-Verlag, Berlin (1990)CrossRefGoogle Scholar
  19. 19.
    Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Hellwig, G.: Differential Operators of Mathematical Physics. Addison-Wesley, MA (1967)zbMATHGoogle Scholar
  21. 21.
    Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)Google Scholar
  22. 22.
    Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland Publishing Company, Amsterdam (1978)zbMATHGoogle Scholar
  23. 23.
    Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)zbMATHGoogle Scholar
  24. 24.
    Bogolyubov, A.N., Mukhartova, Yu.V., Gao, J., Bogolyubov, N.A.: Mathematical modeling of plane chiral waveguide using mixed finite elements. In: Progress in Electromagnetics Research Symposium, pp. 1216–1219 (2012)Google Scholar
  25. 25.
    Bogolyubov, A.N., Mukhartova, Y.V., Gao, T.: Calculation of a parallel-plate waveguide with a chiral insert by the mixed finite element method. Math. Models Compu. Simul. 5(5), 416–428 (2013)CrossRefGoogle Scholar
  26. 26.
    Mukhartova, Y.V., Mongush, O.O., Bogolyubov, A.N.: Application of the finite-element method for solving a spectral problem in a waveguide with piecewise constant bi-isotropic filling. J. Commun. Technol. Electron. 62(1), 1–13 (2017)CrossRefGoogle Scholar
  27. 27.
    Sveshnikov, A.G.: The basis for a method of calculating irregular waveguides. Comput. Math. Math. Phys. 3(1), 170–179 (1963)CrossRefGoogle Scholar
  28. 28.
    Sveshnikov, A.G.: A substantiation of a method for computing the propagation of electromagnetic oscillations in irregular waveguides. Comput. Math. Math. Phys. 3(2), 314–326 (1963)CrossRefGoogle Scholar
  29. 29.
    Mathematics-based software and services for education, engineering, and research. https://www.maplesoft.com/
  30. 30.
    Anderson, E., et al.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999). http://www.netlib.org/lapack/lugCrossRefGoogle Scholar
  31. 31.
    LAPACK Users’ Guide Release. http://www.netlib.org/lapack/lug/node93.html
  32. 32.
    Bellman, R.: Introduction to Matrix Analysis. McGraw-Hill, New York (1960)zbMATHGoogle Scholar
  33. 33.
    Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems. Springer, Berlin (2006)zbMATHGoogle Scholar
  34. 34.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  35. 35.
    Van Loan, C.: On estimating the condition of eigenvalues and eigenvectors. Linear Algebra Appl. 88–89, 715–732 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied Probability and InformaticsPeoples’ Friendship University of Russia (RUDN University)MoscowRussia
  2. 2.Joint Institute for Nuclear Research (Dubna)Moscow RegionRussia

Personalised recommendations