Analytic Complexity of Hypergeometric Functions Satisfying Systems with Holonomic Rank Two

  • V. A. KrasikovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)


We investigate the analytic complexity of solutions to holonomic bivariate hypergeometric systems of the Horn type by means of a Mathematica package. We classify hypergeometric systems with holonomic rank two by the polygons of the Ore–Sato coefficients up to transformations of the defining matrices which do not affect the analytic complexity of solutions. We establish an upper bound for the analytic complexity of solutions to bivariate hypergeometric systems with holonomic rank two.


Hypergeometric systems of partial differential equations Holonomic rank Analytic complexity Differential polynomial Hypergeometry package 



This research was performed in the framework of the basic part of the scientific research state task in the field of scientific activity of the Ministry of Education and Science of the Russian Federation, project “Intellectual analysis of big textual data in finance, business, and education by means of adaptive semantic models”, grant No. 2.9577.2017/8.9.


  1. 1.
    Arnold, V.I.: On the representation of continuous functions of three variables by superpositions of continuous functions of two variables. Mat. Sb. 48(1), 3–74 (1959)MathSciNetGoogle Scholar
  2. 2.
    Beloshapka, V.K.: Analytic complexity of functions of two variables. Russ. J. Math. Phys. 14(3), 243–249 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Beloshapka, V.K.: On the complexity of differential algebraic definition for classes of analytic complexity. Math. Notes 105(3), 323–331 (2019)MathSciNetGoogle Scholar
  4. 4.
    Dickenstein, A., Matusevich, L.F., Sadykov, T.M.: Bivariate hypergeometric D-modules. Adv. Math. 196, 78–123 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dickenstein, A., Sadykov, T.M.: Algebraicity of solutions to the Mellin system and its monodromy. Dokl. Math. 75(1), 80–82 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dickenstein, A., Sadykov, T.M.: Bases in the solution space of the Mellin system. Sb. Math. 198(9), 59–80 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Horn, J.: Über die Konvergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen. Math. Ann. 34, 544–600 (1889)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Krasikov, V.A., Sadykov, T.M.: On the analytic complexity of discriminants. Proc. Steklov Inst. Math. 279, 78–92 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ostrowski, A.: Über Dirichletsche Reihen und algebraische Differentialgleichungen. Math. Z. 8, 241–298 (1920)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Robertz, D.: Formal Algorithmic Elimination for PDEs. Lecture Notes in Mathematics. Springer, Cham (2014). Scholar
  11. 11.
    Sadykov, T.M., Tanabe, S.: Maximally reducible monodromy of bivariate hypergeometric systems. Izv. Math. 80(1), 221–262 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Sadykov, T.M.: Computational problems of multivariate hypergeometric theory. Program. Comput. Soft. 44(2), 131–137 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sadykov, T.M.: The Hadamard product of hypergeometric series. Bulletin des Sciences Mathematiques 126(1), 31 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Sadykov, T.M.: On the analytic complexity of hypergeometric functions. Proc. Steklov Inst. Math. 298(1), 248–255 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Stepanova, M.A.: Jacobian conjecture for mappings of a special type in \(\mathbb{C}^2\). J. Siberian Fed. Univ. Math. Phys. 11(6), 776–780 (2018)MathSciNetGoogle Scholar
  16. 16.
    Vitushkin, A.G.: On Hilbert’s thirteenth problem and related questions. Russ. Math. Surv. 59(1), 11–25 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Artificial IntelligencePlekhanov Russian University of EconomicsMoscowRussia

Personalised recommendations