Advertisement

On Linear Invariant Manifolds in the Generalized Problem of Motion of a Top in a Magnetic Field

  • Valentin Irtegov
  • Tatiana TitorenkoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)

Abstract

Differential equations describing the rotation of a rigid body with a fixed point under the influence of forces generated by the Barnett–London effect are analyzed. They are a multiparametric system of equations. A technique for finding their linear invariant manifolds is proposed. With this technique, we find the linear invariant manifolds of codimension 1 and use them in the qualitative analysis of the equations. Computer algebra tools are applied to obtain the invariant manifolds and to analyze the equations. These tools proved to be essential.

References

  1. 1.
    Barnett, S.J.: Magnetization by rotation. Phys. Rev. 6(4), 239–270 (1915)CrossRefGoogle Scholar
  2. 2.
    Egarmin, I.E.: On the magnetic field of a rotating superconducting body. In: Aerophysics and Geocosmic Research. Izd. MOTI, Moscow, pp. 95–96 (1983). (in Russian)Google Scholar
  3. 3.
    Everitt, C.W.F., et al.: Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)CrossRefGoogle Scholar
  4. 4.
    Urman, Y.M.: Influence of the Barnett-London effect on the motion of a superconducting rotor in a nonuniform magnetic field. Tech. Phys. 43(8), 885–889 (1998)CrossRefGoogle Scholar
  5. 5.
    Samsonov, V.A.: On the rotation of a rigid body in a magnetic field. Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela. 4, 32–34 (1984). (in Russian)Google Scholar
  6. 6.
    Kozlov, V.V.: To the problem of the rotation of a rigid body in a magnetic field. Izv. Akad. Nauk SSSR. Mekhanika Tverdogo Tela. 6, 28–33 (1985). (in Russian)Google Scholar
  7. 7.
    Gorr, G.V.: A linear invariant relation in the problem of the motion of a gyrostat in a magnetic field. J. Appl. Math. Meth. 61(4), 549–552 (1997)MathSciNetGoogle Scholar
  8. 8.
    Hess, W.: Über die Euler’schen Bewegungsgleichungen und über eine neue partikuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt. Math. Ann. 37(2), 153–181 (1890)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Irtegov, V., Titorenko, T.: On stationary motions of the generalized kowalewski gyrostat and their stability. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 210–224. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_16CrossRefGoogle Scholar
  10. 10.
    Lyapunov, A.M.: On permanent helical motions of a rigid body in fluid. Collected Works, USSR Acad. Sci., Moscow-Leningrad. 1, 276–319 (1954). (in Russian)Google Scholar
  11. 11.
    Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: Software package for finding and stability analysis of stationary sets. Certificate of State Registration of Software Programs. FGU-FIPS. No. 2011615235 (2011)Google Scholar
  12. 12.
    Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis, London (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for System Dynamics and Control Theory SB RASIrkutskRussia

Personalised recommendations