Advertisement

About Integrability of the Degenerate System

  • Victor F. EdneralEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)

Abstract

We study integrability of an autonomous planar polynomial system of ODEs with a degenerate singular point at the origin depending on five parameters. By mean of the Power Geometry Method, this degenerated system is reduced to a non-degenerate form by the blow-up process. After, we search for the necessary conditions of local integrability by the normal form method. We look for the set of necessary conditions on parameters under which the original system is locally integrable near the degenerate stationary point. We found seven two-parametric families in the five-parameter space. Then first integrals of motion were found for six families. For the seventh family, we found the formal first integral. So, at least six of these families in parameters space are manifolds where the global integrability of the original system takes place.

Keywords

Ordinary differential equations Integrability Resonant normal form Power geometry Computer algebra 

Notes

Acknowledgements

The author is very grateful to Profs. A.D. Bruno, V.G. Romanovski, and A.B. Batkhin for important advices, discussions, and assistance.

References

  1. 1.
    Algaba, A., Gamero, E., Garcia, C.: The integrability problem for a class of planar systems. Nonlinearity 22, 395–420 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bateman, H., Erdêlyi, A.: Higher Transcendental Functions, vol. 1. Mc Graw-Hill Book Company Inc., New York (1953)zbMATHGoogle Scholar
  3. 3.
    Bruno, A.D.: Analytical form of differential equations (I, II). Trudy Moskov. Mat. Obsc. 25, 119–262 (1971), 26, 199–239 (1972) (in Russian). Trans. Moscow Math. Soc. 25, 131–288 (1971), 26, 199–239 (1972) (in English)Google Scholar
  4. 4.
    Bruno, A.D.: Local Methods in Nonlinear Differential Equations. Nauka, Moscow 1979 (in Russian). Springer, Berlin (1989) (in English)Google Scholar
  5. 5.
    Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Fizmatlit, Moscow (1998) (in Russian). Elsevier Science, Amsterdam (2000) (in English)Google Scholar
  6. 6.
    Edneral, V.F., Khanin, R.: Application of the resonant normal form to high-order nonlinear ODEs using mathematica. Nucl. Instrum. Methods Phys. Res. Sect. A 502(2–3), 643–645 (2003)CrossRefGoogle Scholar
  7. 7.
    Edneral, V., Romanovski, V.G.: On sufficient conditions for integrability of a planar system of odes near a degenerate stationary point. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 97–105. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15274-0_9CrossRefGoogle Scholar
  8. 8.
    Edneral, V.F.: An algorithm for construction of normal forms. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 134–142. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75187-8_10CrossRefGoogle Scholar
  9. 9.
    Bruno, A.D., Edneral, V.: On Integrability of a Planar ODE System Near a Degenerate Stationary Point. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 45–53. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04103-7_4CrossRefGoogle Scholar
  10. 10.
    Bruno, A.D., Edneral, V.F.: On integrability of a planar system of ODEs near a degenerate stationary point. J. Math. Sci. 166(3), 326–333 (2010)CrossRefGoogle Scholar
  11. 11.
    Bruno, A.D., Edneral, V.F.: On possibility of additional solutions of the degenerate system near double degeneration at the special value of the parameter. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 75–87. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02297-0_6CrossRefGoogle Scholar
  12. 12.
    Bruno, A.D., Edneral, V.F., Romanovski, V.G.: On new integrals of the algaba-gamero-garcia system. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 40–50. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_4CrossRefGoogle Scholar
  13. 13.
    Edneral, V.F.: Application of power geometry and normal form methods to the study of nonlinear ODEs. EPJ Web. Conf. 173, 01004 (2018)CrossRefGoogle Scholar
  14. 14.
    Edneral, V., Romanovski, V.: Local and global odes properties. In: Proceedings of 24th Conference on Applications of Computer Algebra - ACA, Santiago de Compostela, Spain (2018).  https://doi.org/10.15304/9788416954872
  15. 15.
    Christopher, C., Mardešić, P., Rousseau, C.: Normalizable, integrable, and linearizable saddle points for complex quadratic systems in \({ C}^2\). J. Dyn. Control Sys. 9, 311–363 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Romanovski, V.G., Shafer, D.S.: The Center And Cyclicity Problems: A Computational Algebra Approach. Birkhüser, Boston (2009)zbMATHGoogle Scholar
  17. 17.
  18. 18.
  19. 19.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Peoples’ Friendship University of Russia (RUDN University)MoscowRussian Federation

Personalised recommendations