Advertisement

IR Spectra of Minerals and Related Compounds, and Reference Samples Data

  • Nikita V. Chukanov
  • Marina F. Vigasina
Chapter
Part of the Springer Mineralogy book series (MINERAL)

Abstract

This chapter contains IR spectra of 1024 minerals and related compounds which were not included in the preceding reference books of this series [Chukanov (Infrared spectra of mineral species: Extended library. Springer-Verlag GmbH, 2014); Chukanov and Chervonnyi 2016]. Most spectra are accompanied by the information about the origin of reference samples, methods of their identification, and analytical data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdija Z, Najdoski M, Koleva V, Runčevski T, Dinnebier RE, Šoptrajanov B, Stefov V (2014) Preparation, structural, thermogravimetric and spectroscopic study of magnesium potassium arsenate hexahydrate. Z anorg allg Chem 640(15):3177–3183CrossRefGoogle Scholar
  2. Abraham S, Aruldhas G (1994) Infrared and polarized Raman spectra of Cd(HCOO)2∙2H2O. Phys Status Solidi A 144(2):485–491CrossRefGoogle Scholar
  3. Achary SN, Errandonea D, Muñoz A, Rodríguez-Hernández P, Manjón FJ, Krishna PSR, Patwe SJ, Grover V, Tyagi AK (2013) Experimental and theoretical investigations on the polymorphism and metastability of BiPO4. Dalton Trans 42(42):14999–15015CrossRefGoogle Scholar
  4. Agakhanov AA, Pautov LA, Sokolova E, Hawthorne FC, Karpenko VY, Siidra O, Garanin VK (2016a) Mendeleevite-(Nd), (Cs,□)6(□,Cs)6(□,K)6(REE,Ca)30(Si70O175)(OH,H2O,F)35, a new mineral from the Darai-Pioz alkaline massif, Tajikistan. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.076CrossRefGoogle Scholar
  5. Agakhanov AA, Pautov LA, Sokolova E, Abdu YA, Karpenko VY (2016b) Two astrophyllite-supergroup minerals: bulgakite, a new mineral from the Darai-Pioz alkaline massif, Tajikistan and revision of the crystal structure and chemical formula of nalivkinite. Can Mineral 54:33–48CrossRefGoogle Scholar
  6. Ahn HS, Lee EP, Chang HY, Lee DW, Ok KM (2015) Sr3Bi2(SeO3)6∙H2O: a novel anionic layer consisting of second-order Jahn–Teller (SOJT) distortive cations. J Solid State Chem 221:73–78CrossRefGoogle Scholar
  7. Alekseev EV, Felbinger O, Wu S, Malcherek T, Depmeier W, Modolo G, Gesing TM, Krivovichev SV, Suleimanov EV, Gavrilova TA, Pokrovsky LD, Pugachev AM, Surovtsev NV, Atuchin VV (2013) K[AsW2O9], the first member of the arsenate–tungsten bronze family: synthesis, structure, spectroscopic and non-linear optical properties. J Solid State Chem 204:59–63CrossRefGoogle Scholar
  8. Ali AB, Awaleh MO, Leblanc M, Smiri LS, Maisonneuve V, Houlbert S (2004a) Hydrothermal synthesis, crystal structure, thermal behaviour, IR and Raman spectroscopy of Na3Y(CO3)3∙6H2O. Compt Rend Chim 7(6):661–668Google Scholar
  9. Ali AB, Maisonneuve V, Houlbert S, Silly G, Buzaré JY, Leblanc M (2004b) Cation and anion disorder in new cubic rare earth carbonates Na2LiLn(CO3)3 (Ln = Eu–Er, Yb, Lu, Y); synthesis, crystal structures, IR, Raman and NMR characterizations. Solid State Sci 6(11):1237–1243CrossRefGoogle Scholar
  10. Alibakhshi E, Ghasemi E, Mahdavian M (2012) A comparison study on corrosion behavior of zinc phosphate and potassium zinc phosphate anticorrosive pigments. Prog Color Colorants Coat 5:91–99Google Scholar
  11. Amdouni N, Zarrouk H, Julien CM (2003) Synthesis, structure and intercalation of brannerite LiWVO6 wet-chemical products. J Mater Sci 38(22):4573–4579CrossRefGoogle Scholar
  12. Amri M, Zouari N, Mhiri T, Gravereau P (2009) Synthesis, structure determination and calorimetric study of new cesium hydrogen selenate arsenate Cs4(SeO4)(HSeO4)2(H3AsO4). J Alloys Compd 477(1):68–75CrossRefGoogle Scholar
  13. An S, Liu X, Yang L, Zhang L (2015) Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: study in single-and binary-solute systems. Chem Eng Res Design 94:726–735CrossRefGoogle Scholar
  14. Antony CJ, Aatiq A, Panicker CY, Bushiri MJ, Varghese HT, Manojkumar TK (2011) FT-IR and FT-Raman study of Nasicon type phosphates, ASnFe(PO4)3 [A= Na2, Ca, Cd]. Spectrochim Acta A 78(1):415–419CrossRefGoogle Scholar
  15. Aronne A, Esposito S, Ferone C, Pansini M, Pernice P (2002) FTIR study of the thermal transformation of barium-exchanged zeolite A to celsian. J Mater Chem 12(10):3039–3045CrossRefGoogle Scholar
  16. Augsburger MS, Juri MA, Pedregosa JC, Mercader RC (1992) Crystal data and spectroscopic studies of NaNiFe2(AsO4)3. J Solid State Chem 101(1):66–70CrossRefGoogle Scholar
  17. Azrour M, Azdouz M, Manoun B, Essehli R, Benmokhtar S, Bih L, El Ammari L, Ezzahi A, Ider A, Hou AA (2011) Rietveld refinements and vibrational spectroscopic studies of Na1−xKxPb4(PO4)3 lacunar apatites (0≤ x≤ 1). J Phys Chem Solids 72(11):1199–1205CrossRefGoogle Scholar
  18. Bai L, Xue Y, Zhang J, Pan B, Wu C (2013) Synthetic potassium vanadium oxide K2V6O16∙1.5H2O superlong nanobelts: a 1D room-temperature ferromagnetic semiconductor. Eur J Inorg Chem 2013(20):3497–3505CrossRefGoogle Scholar
  19. Bai C, Han S, Pan S, Bian Q, Yang Z, Zhang X, Lin X, Jing Q (2014) Reinvestigation and characterization of the magnesium borate fluoride Mg5(BO3)F. Z anorg allg Chemie 640(10):2013–2018CrossRefGoogle Scholar
  20. Balakrishnan T, Bhagavannarayana G, Ramamurthi K (2008) Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal. Spectrochim Acta A 71(2):578–583CrossRefGoogle Scholar
  21. Balraj V, Vidyasagar K (1999) Syntheses and characterization of novel three-dimensional tellurites, Na2MTe4O12 (M = W, Mo), with intersecting tunnels. Inorg Chem 38(25):5809–5813CrossRefGoogle Scholar
  22. Bang SE, Lee DW, Ok KM (2014) Variable framework structures and centricities in alkali metal yttrium selenites, AY(SeO3)2 (A = Na, K, Rb, and Cs). Inorg Chem 53(9):4756–4762CrossRefGoogle Scholar
  23. Banks E, Greenblatt M, McGarvey BR (1967) ESR and optical spectroscopy of CrO43− in chlorospodiosite, Ca2PO4Cl. J Chem Phys 47(10):3772–3780CrossRefGoogle Scholar
  24. Baran EJ (1973) Infrarotspektrum und Kraftkonstanten des CoO44–-Ions. Z anorg allg Chemie 399(1):57–64. (in German)CrossRefGoogle Scholar
  25. Baran EJ (1976) Die Schwingungsspektren von Ca3(VO4)2 und Ca3(AsO4)2. Z anorg allg Chemie 427(2):131–136. (in German)CrossRefGoogle Scholar
  26. Baran EJ (1978) Das Schwingungsspektrum des Ditellurit-Ions. Z anorg allg Chemie 442(1):112–118. (in German)CrossRefGoogle Scholar
  27. Baran EJ (1994) Vibrational and electronic spectra of copper(II) chromate. Spectrochim Acta A 50(14):2385–2389CrossRefGoogle Scholar
  28. Baran EJ (1996) Vibrational spectra of Sr2(VO)V2O8. J Raman Spectrosc 27(7):555–557CrossRefGoogle Scholar
  29. Baran EJ (1997) Vibrational spectra of Ba2(VO)V2O8. J Raman Spectrosc 28:289–291CrossRefGoogle Scholar
  30. Baran EJ, Aymonino PJ (1971) Die Infrarotspektren der Orthovanadate der leichteren Lanthanide. Z anorg allg Chemie 383(2):226–229. (in German)CrossRefGoogle Scholar
  31. Baran EJ, Aymonino PJ (1972) Die Infrarotspektren einiger Orthovanadate mit Apatitstruktur. Z anorg allg Chemie 390(1):77–84. (in German)CrossRefGoogle Scholar
  32. Baran EJ, Botto IL (1978) Die IR-Spektren einiger Doppeloxide mit Ilmenit-Struktur. Z anorg allg Chemie 444(1):282–288. (in German)CrossRefGoogle Scholar
  33. Baran EJ, Botto IL (1980) Die Schwingungsspektren einiger tellurhaltiger 2,6-Spinelle. Z anorg allg Chemie 463(1):185–192. (in German)CrossRefGoogle Scholar
  34. Baran EJ, Lii KH (1992) Vibrational spectrum of Zn2VO(PO4)2. J Raman Spectrosc 23(2):125–126CrossRefGoogle Scholar
  35. Baran EJ, Rabe S (1999) The infrared spectrum of α-(NH4)2(VO)3(P2O7)2. J Mater Sci Lett 18:1779–1780CrossRefGoogle Scholar
  36. Baran EJ, Weil M (2004) Vibrational spectra of Cd2As2O7. J Raman Spectrosc 35(2):178–180CrossRefGoogle Scholar
  37. Baran EJ, Gentil LA, Pedregosa JC, Aymonino PJ (1974) Die Divanadate des Thoriums. Z anorg allg Chemie 410(3):301–312. (in German)CrossRefGoogle Scholar
  38. Baran EJ, Botto IL, Fournier LL (1981) Das Schwingungsspektrum von α-Te2MoO7 und ein Vorschlag zur Struktur der Telluromolybdate zwei wertiger Kationen. Z anorg allg Chemie 476(5):214–220. (in German)CrossRefGoogle Scholar
  39. Baran EJ, Botto IL, Muto F, Kumada N, Kinomura N (1986) Vibrational spectra of the ilmenite modifications of LiNbO3 and NaNbO3. J Mater Sci Lett 5(6):671–672CrossRefGoogle Scholar
  40. Baran EJ, Muto F, Kumada N, Kinomura N (1989) The infrared spectra of TiPO4 and VPO4. J Mater Sci Lett 8(11):1305–1306CrossRefGoogle Scholar
  41. Baran EJ, Vassalo MB, Lii K-H (1994) Vibrational Spectra of β-LiVOPO4 and NaVOPO4. J Raman Spectrosc 25:199–202CrossRefGoogle Scholar
  42. Baran EJ, Lii KH, Wu LS (1995) The infrared spectrum of [Ni(H2O)4][VOPO4]2. J Mater Sci Lett 14(5):324326CrossRefGoogle Scholar
  43. Baran EJ, Vassallo MB, Lii KH (1996) Vibrational spectrum of RbVOPO4. Vibr Spectrosc 10(2):331–334CrossRefGoogle Scholar
  44. Baran J, Ilczyszyn MM, Marchewka MK, Ratajczak H (1999a) Vibrational studies of different modifications of the sodium hydrogen sulphate crystals. Spectrosc Lett Int J Rapid Commun 32(1):83–102CrossRefGoogle Scholar
  45. Baran EJ, Mormann T, Jeitschko W (1999b) Infrared and Raman spectra of (Hg2)3(AsO4)2 and Hg3(AsO4)2. J Raman Spectrosc 30:1049–1051CrossRefGoogle Scholar
  46. Baran EJ, Schwendtner K, Kolitsch U (2006) Vibrational spectra of ScAsO4∙H2O. J Raman Spectrosc 37(12):1453–1455CrossRefGoogle Scholar
  47. Barpanda P, Liu G, Mohamed Z, Ling CD, Yamada A (2014) Structural, magnetic and electrochemical investigation of novel binary Na2−x(Fe1−yMny)P2O7 (0 ≤ y ≤ 1) pyrophosphate compounds for rechargeable sodium-ion batteries. Solid State Ionics 268:305–311CrossRefGoogle Scholar
  48. Bechibani I, Litaiem H, Ktari L, Zouari N, Garcia-Granda S, Dammak M (2014) Structural, thermal behavior, dielectric and vibrational studies of the new compound, sodium hydrogen arsenate tellurate Na2H4As2O5(H2TeO4). J Phys Chem Solids 75(7):911–920CrossRefGoogle Scholar
  49. Bechir MB, Rhaiem AB, Guidara K (2014) A.c. conductivity and dielectric study of LiNiPO4 synthesized by solid-state method. Bull Mater Sci 37(3):473–480CrossRefGoogle Scholar
  50. Behrens EA, Poojary DM, Clearfield A (1996) Syntheses, crystal structures, and ion-exchange properties of porous titanosilicates, HM3Ti4O4(SiO4)3∙4H2O (M = H+, K+, Cs+), structural analogues of the mineral pharmacosiderite. Chem Mater 8(6):1236–1244CrossRefGoogle Scholar
  51. Belik AA, Izumi F, Stefanovich SY, Malakho AP, Lazoryak BI, Leonidov IA, Leonidova IA, Davydov SA (2002) Polar and centrosymmetric phases in solid solutions Ca3-xSrx(PO4)2 (0≤ x ≤ 16/7). Chem Mater 14(7):3197–3205CrossRefGoogle Scholar
  52. Belik AA, Izumi F, Azuma M, Kamiyama T, Oikawa K, Pokholok KV, Lazoryak BI, Takano M (2005) Redox reactions in strontium iron phosphates: synthesis, structures, and characterization of Sr9Fe(PO4)7 and Sr9FeD(PO4)7. Chem Mater 17(22):5455–5464CrossRefGoogle Scholar
  53. Belkouch J, Monceaux L, Bordes E, Courtine P (1995) Comparative structural study of mixed metals pyrophosphates. Mater Res Bull 30(2):149–160CrossRefGoogle Scholar
  54. Benhammou A, Yaacoubi A, Nibou L, Bonnet JP, Tanouti B (2011) Synthesis and characterization of pillared stevensites: application to chromate adsorption. Environ Technol 32(4):363–372CrossRefGoogle Scholar
  55. Benmokhtar S, El Jazouli A, Chaminade JP, Gravereau P, Guillen F, De Waal D (2004) Synthesis, crystal structure and optical properties of BiMgVO5. J Solid State Chem 177(11):4175–4182CrossRefGoogle Scholar
  56. Benmokhtar S, Belmal H, El Jazouli A, Chaminade JP, Gravereau P, Pechev S, Grenier JC, Villeneuve G, De Waal D (2007a) Synthesis, structure, and physicochemical investigations of the new αCu0.50TiO(PO4) oxyphosphate. J Solid State Chem 180(2):772–779CrossRefGoogle Scholar
  57. Benmokhtar S, Chaminade JP, Gravereau P, Menetrier M, Bouree F (2007b) New process of preparation, structure, and physicochemical investigations of the new titanyl phosphate Ti2O(H2O)(PO4)2. J Solid State Chem 180(10):2713–2722CrossRefGoogle Scholar
  58. Benreguia N, Barnabé A, Trari M (2015) Sol-gel synthesis and characterization of the delafossite CuAlO2. J Sol-Gel Sci Technol 75(3):670–679CrossRefGoogle Scholar
  59. Besnardiere J, Petrissans X, Ribot F, Briois V, Surcin C, Morcrette M, Buissette V, Le Mercier T, Cassaignon S, Portehault D (2016) Nanoparticles of low-valence vanadium oxyhydroxides: reaction mechanisms and polymorphism control by low-temperature aqueous chemistry. Inorg Chem 55:11502–11512CrossRefGoogle Scholar
  60. Bette S, Dinnebier RE, Freyer D (2014) Ni3Cl2.1(OH)3.9∙4H2O, the Ni analogue to Mg3Cl2(OH)4∙4H2O. Inorg Chem 53(9):4316–4324CrossRefGoogle Scholar
  61. Bette S, Dinnebier RE, Röder C, Freyer D (2015) A solid solution series of atacamite type Ni2xMg2−2xCl(OH)3. J Solid State Chem 228:131–140CrossRefGoogle Scholar
  62. Beukes GJ, Schoch AE, De Bruiyn H, Van der Westhuizen WA, Bok LDC (1984) A new occurrence of the hydrated aluminum sulphate zaherite, from Pofadder, South Africa. Mineral Mag 48:131–135CrossRefGoogle Scholar
  63. Bhake AM, Nair GB, Zade GD, Dhoble SJ (2016) Synthesis and characterization of novel Na15(SO4)5ClF4:Ce3+ halosulfate phosphors. Luminescence.  https://doi.org/10.1002/bio.3131CrossRefGoogle Scholar
  64. Bharti C, Sinha TP (2010) Dielectric properties of rare earth double perovskite oxide Sr2CeSbO6. Solid State Sci 12(4):498–502CrossRefGoogle Scholar
  65. Bharti C, Sinha TP (2011) Synthesis, structure and dielectric properties of a rare earth double perovskite oxide Ba2CeTaO6. Mater Res Bull 46(9):1431–1436CrossRefGoogle Scholar
  66. Bhide V, Husson E, Gasperin M (1980) Etude de niobates de structure GTB par absorption infra-rouge et diffusion Raman. Mater Res Bull 15(9):1339–1344. (in French)CrossRefGoogle Scholar
  67. Birsöz B, Baykal A (2008) X-ray powder diffraction, FTIR, and Raman study of strontium boroarsenate, SrBAsO5. Rus J Inorg Chem 53(7):1009–1012CrossRefGoogle Scholar
  68. Blasse G, ‘T Lam RUE (1978) Some optical properties of aluminum and gallium niobate. J Solid State Chem 25:11–83CrossRefGoogle Scholar
  69. Blasse G, Corsmit AF (1974) Vibrational spectra of 1:2 ordered perovskites. J Solid State Chem 10(1):39–45CrossRefGoogle Scholar
  70. Blasse G, Van Den Heuvel GPM (1974) Vibrational spectra and structural considerations of compounds NaLnTiO4. J Solid State Chem 10(3):206–210CrossRefGoogle Scholar
  71. Blonska-Tabero A (2009) A new iron lead vanadate Pb2FeV3O11: synthesis and some properties. Mater Res Bull 44(8):1621–1625CrossRefGoogle Scholar
  72. Boch R, Dietzel M, Reichl P, Leis A, Baldermann A, Mittermayr F, Pölt P (2015) Rapid ikaite (CaCO3∙6H2O) crystallization in a man-made river bed: hydrogeochemical monitoring of a rarely documented mineral formation. Appl Geochem 63:366–379CrossRefGoogle Scholar
  73. Bode JHG, Kuijt HR, Lahey MT, Blasse G (1973) Vibrational spectra of compounds Ln2MoO6 and Ln2WO6. J Solid State Chem 8(2):114–119CrossRefGoogle Scholar
  74. Bondi M, Griffin WL, Mattioli V, Mottana A (1983) Chiavennite, CaMnBe2Si5O13(OH)2∙2H2O, a new mineral from Chiavenna (Italy). Am Mineral 68:623–627Google Scholar
  75. Bontchev RP, Moore RC (2004) A series of open-framework tin (II) phosphates: A[Sn4(PO4)3] (A = Na, K, NH4). Solid State Sci 6(8):867–873CrossRefGoogle Scholar
  76. Bordes E, Courtine P, Johnson JW (1984) On the topotactic dehydration of VOHPO4∙0.5H2O into vanadyl pyrophosphate. J Solid State Chem 55(3):270–279CrossRefGoogle Scholar
  77. Borel MM, Leclaire A, Chardon J, Daturi M, Raveau B (2000) Dimorphism of the vanadium(V) monophosphate PbVO2PO4: α-layered and β-tunnel structures. J Solid State Chem 149(1):149–154CrossRefGoogle Scholar
  78. Borovikova EY, Kurazhkovskaya VS, Boldyrev KN, Sukhanov MV, Pet’kov VI, Kokarev SA (2014) Vibrational spectra and factor-group analysis of double arsenates of zirconium and alkali metal MZr2(AsO4)3 (M = Li–Cs). Vibr Spectrosc 73:158–163CrossRefGoogle Scholar
  79. Bortun AI, Bortun LN, Poojary DM, Xiang O, Clearfield A (2000) Synthesis, characterization, and ion exchange behavior of a framework potassium titanium trisilicate K2TiSi3O9∙H2O and its protonated phases. Chem Mater 12(2):294–305CrossRefGoogle Scholar
  80. Boscardin M, Rocchetti I, Zordan A, Zorzi F (2009) Scarbroite e Felsöbányaite: primo ritrovamentonelVicentino. Studi e Ricerche – Associazione Amici del Museo – Museo Civico “G. Zannato”, Montecchio Maggiore (Vicenza) 16:47–56. (in Italian)Google Scholar
  81. Botto IL, Baran EJ (1976) Über Ammonium-Uranyl-Vanadat und die Produkte seiner thermischen Zersetzung. Z anorg allg Chemie 426(3):321–332. (in German)CrossRefGoogle Scholar
  82. Botto IL, Baran EJ (1977) KristallographischeDaten, IR-Spektrum und thermisches Verhalten von Cer (IV)-Diphosphat. Z anorg allg Chemie 430(1):283–288. (in German)CrossRefGoogle Scholar
  83. Botto IL, Baran EJ (1980) Die IR-Spektren einiger Doppeloxide des Typs MIISnO3. Z anorg allg Chemie 465(1):186–192. (in German)CrossRefGoogle Scholar
  84. Botto IL, Baran EJ (1981) IR-Spektren einiger Doppeloxide des Typs Te3MIVO8. Z anorg allg Chemie 480(9):220–224. (in German)CrossRefGoogle Scholar
  85. Botto IL, Baran EJ (1982) Darstellung und Eigenschaften von CeTe2O6 und ThTe2O6, Verbindungen mit einer neuen Überstruktur des Fluorit-Typs. Z anorg allg Chemie 484(1):215–220. (in German)CrossRefGoogle Scholar
  86. Botto IL, Garcia AC (1989) Crystallographic data and vibrational spectrum of K2SbAsO6. Mat Res Bull 24(12):1431–1439CrossRefGoogle Scholar
  87. Botto IL, Vassallo M (1989) The vibrational spectrum of the NaZnPO4 ferroelectric phase. J Mater Sci Lett 8(11):1336–1337CrossRefGoogle Scholar
  88. Botto IL, Cabello CI, Minelli G, Occhiuzzi M (1994) Reductibility and spectroscopic behaviour of the (NH4)4[H6CuMo6O24]∙4H2O Anderson phase. Mater Chem Phys 39(1):21–28CrossRefGoogle Scholar
  89. Botto IL, Ramis AM, Schalamuk IB, Sánchez MA (1995) Thermal decomposition of Bi2STe2 tetradymite. Thermochim Acta 249:325–333CrossRefGoogle Scholar
  90. Botto IL, Barone VL, Sanchez MA (2002) Spectroscopic and thermal contribution to the structural characterization of vandenbrandeite. J Mater Sci 37(1):177–183CrossRefGoogle Scholar
  91. Boyadzhieva T, Koleva V, Zhecheva E, Nihtianova D, Mihaylov L, Stoyanova R (2015) Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black. RSC Adv 5(106):87694–87705CrossRefGoogle Scholar
  92. Brabers VAM (1969) Infrared spectra of cubic and tetragonal manganese ferrites. Phys Status Solidi B 33(2):563–572CrossRefGoogle Scholar
  93. Brabers VAM (1976) Infrared spectra and ionic ordering of the lithium ferrite – aluminate and chromite systems.Spectrochim. Acta A 32(11):1709–1711Google Scholar
  94. Brandel V, Dacheux N, Genet M, Podor R (2001) Hydrothermal synthesis and characterization of the thorium phosphate hydrogenphosphate, thorium hydroxide phosphate, and dithorium oxide phosphate. J Solid State Chem 159(1):139–148CrossRefGoogle Scholar
  95. Bréard Y, Michel C, Hervieu M, Nguyen N, Ducouret A, Hardy V, Maignan A, Raveau B, Bourée F, André G (2004) Spin reorientation associated with a structural transition in the iron oxycarbonate Sr4Fe2O6CO3. Chem Mater 16(15):2895–2905CrossRefGoogle Scholar
  96. Bremard C, Laureyns J, Abraham F (1986) Vibrational spectra and phase transitions in columnar MI3[M′ III(SO4)3] compounds. J Raman Spectrosc 17(5):397–405CrossRefGoogle Scholar
  97. Breternitz J, Farrugia LJ, Godula-Jopek A, Saremi-Yarahmadi S, Malka IE, Hoang TK, Gregory DH (2015) Reaction of [Ni(H2O)6](NO3)2 with gaseous NH3; crystal growth via in-situ solvation. J Cryst Growth 412:1–6CrossRefGoogle Scholar
  98. Britvin SN, Kashtanov SA, Krzhizhanovskaya MG, Gurinov AA, Glumov OV, Strekopytov S, Kretser YL, Zaitsev AN, Chukanov NV, Krivovichev SV (2015) Perovskites with the framework-forming xenon. Angew Chem Int Ed 54:14340–14344CrossRefGoogle Scholar
  99. Britvin SN, Kashtanov SA, Krivovichev SV, Chukanov NV (2016) Xenon in rigid oxide frameworks: structure, bonding and explosive properties of layered perovskite K4Xe3O12. J Am Chem Soc.  https://doi.org/10.1021/jacs.6b09056CrossRefGoogle Scholar
  100. Brockner W, Hoyer LP (2002) Synthesis and vibrational spectrum of antimony phosphate, SbPO4. Spectrochim Acta A 58(9):1911–1914CrossRefGoogle Scholar
  101. Buhl JC (1991) Synthesis and properties of nitrite-nitrate sodalite solid solutions Na8[AlSiO4]6(NO2)2−x(NO3)x; 0.4 ≤ x ≤ 1.8. J Solid State Chem 91(1):16–24CrossRefGoogle Scholar
  102. Bühler K, Bues W (1961) Schwingungsspektren von Fluorophosphatschmelzen und -kristallen. Z anor gallg Chemie 308(1–6):62–71. (in German)CrossRefGoogle Scholar
  103. Bujakiewicz-Korońska R, Hetmańczyk Ł, Garbarz-Glos B, Budziak A, Koroński J, Hetmańczyk J, Antonova M, Kalvane A, Nałęcz D (2011) Investigations of low temperature phase transitions in BiFeO3 ceramic by infrared spectroscopy. Ferroelectrics 417(1):63–69CrossRefGoogle Scholar
  104. Bulanov EN, Wang J, Knyazev AV, White T, Manyakina ME, Baikie T, Lapshin AN, Dong Z (2015) Structure and thermal expansion of calcium–thorium apatite, [Ca4]F[Ca2Th4]T[(SiO4)6]O2. Inorg Chem 54(23):11356–11361CrossRefGoogle Scholar
  105. Burns PC, Alexopoulos CM, Hotchkiss PJ, Locock AJ (2004) An unprecedented uranyl phosphate framework in the structure of [(UO2)3(PO4)O(OH)(H2O)2](H2O). Inorg Chem 43(6):1816–1818CrossRefGoogle Scholar
  106. Buvaneswari G, Varadaraju UV (2000) Synthesis and characterization of new apatite-related phosphates. J Solid State Chem 149(1):133–136CrossRefGoogle Scholar
  107. Cahen HT, de Wit JHW, Honders A, Broers GHJ, van den Dungen JPM (1980) Thermogalvanic power and fast ion conduction in δ-Bi2O3 and δ-(Bi2O3)1−x(R2O3)x with R = Y, Tb–Lu. Solid State Ionics 1(5):425–440CrossRefGoogle Scholar
  108. Caldow GL, Van Cleave AB, Eager RL (1960) The infrared spectra of some uranyl compounds. Can J Chem 38(6):772–782CrossRefGoogle Scholar
  109. Cámara F, Bittarello E, Ciriotti ME, Nestola F, Radica F, Massimi F, Balestra C, Bracco R (2016a) As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: III. Canosioite, Ba2Fe3+(AsO4)2(OH), description and crystal structure. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.097CrossRefGoogle Scholar
  110. Cámara F, Sokolova E, Abdu YA, Hawthorne FC, Charrier T, Dorcet V, Carpentier J-F (2016b) Fogoite-(Y), Na3Ca2Y2Ti(Si2O7)2OF3, a Group-I TS-block mineral from the Lagoa do Fogo, the Fogo volcano, the São Miguel Island, the Azores: description and crystal structure. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.103CrossRefGoogle Scholar
  111. Campostrini I, Gramaccioli CM, Demartin F (1999) Orlandiite, Pb3Cl4(SeO3)·H2O, a new mineral species, and an associated lead-copper selenite chloride from the Baccu Locci mine, Sardinia, Italy. Can Mineral 37:1493–1498Google Scholar
  112. Casciola M, Donnadio A, Montanari F, Piaggio P, Valentini V (2007) Vibrational spectra and H-bondings in anhydrous and monohydrate α-Zr phosphates. J Solid State Chem 180(4):1198–1208CrossRefGoogle Scholar
  113. Cavalcante LS, Moraes E, Almeida MAP, Dalmaschio CJ, Batista NC, Varela JA, Longo E, Li MS, Beltrán A (2013) A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron 54:13–25CrossRefGoogle Scholar
  114. Chaalia S, Ayed B, Haddad A (2012) K2Mn3(AsO4)3: synthesis, crystalline structure and ionic conductivity. J Chem Crystallogr 42(9):941–946CrossRefGoogle Scholar
  115. Chahboun H, Groult D, Raveau B (1988) TaVO5, a novel derivative of the series of monophosphate tungsten bronzes (PO2)4(WO3)2m. Mater Res Bulletin 23(6):805–812CrossRefGoogle Scholar
  116. Chaix-Pluchery O, Lucazeau G (1998) Vibrational study of transition metal disilicides, MSi2 (M = Nb, Ta, V, Cr). J Raman Spectrosc 29(2):159–164CrossRefGoogle Scholar
  117. Chakir M, Jazouli AE, De Waal D (2003) Structural and vibrational studies of NaZr2(AsO4)3. Mater Res Bull 38(13):1773–1779CrossRefGoogle Scholar
  118. Chandrappa GT, Chithaiah P, Ashoka S, Livage J (2011) Morphological evolution of (NH4)0.5V2O5m H2O fibers into belts, triangles, and rings. InorgChem 50(16):7421–7428Google Scholar
  119. Chang HY, Kim SH, Ok KM, Halasyamani PS (2009) Polar or nonpolar? A+cation polarity control in A2Ti(IO3)6 (A = Li, Na, K, Rb, Cs, Tl). J Am Chem Soc 131(19):6865–6873CrossRefGoogle Scholar
  120. Chater R, Gavarri JR, Genet F (1986) Composes isomorphes MeX2O4E2: I. Etude vibrationnelle de MnSb2O4 entre 4 et 300 K: champ de force et tenseurélastique. J Solid State Chem 63(2):295–307. (in French)CrossRefGoogle Scholar
  121. Chen D, Jiao X (2001) Hydrothermal synthesis and characterization of Bi4Ti3O12 powders from different precursors. Mater Res Bull 36(1):355–363CrossRefGoogle Scholar
  122. Chen X, Pei Y (2016) Effects of sodium pentaboratepentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities. Ecotoxicol Environ Safety 132:353–359CrossRefGoogle Scholar
  123. Chen G, Wu Y, Fu P (2006a) Growth and characterization of a new nonlinear optical crystal Ca5(BO3)3F. J Crystal Growth 292(2):449–453CrossRefGoogle Scholar
  124. Chen X, Zhao Y, Chang X, Zuo J, Zang H, Xiao W (2006b) Syntheses and crystal structures of two new hydrated borates, Zn8[(BO3)3O2(OH)3] and Pb[B5O8(OH)]∙1.5H2O. J Solid State Chem 179(12):3911–3918CrossRefGoogle Scholar
  125. Chen X, Li M, Chang X, Zang H, Xiao W (2007a) Synthesis and crystal structure of a novel pentaborate, Na3ZnB5O10. J Solid State Chem 180(5):1658–1663CrossRefGoogle Scholar
  126. Chen X, Li M, Zuo J, Chang X, Zang H, Xiao W (2007b) Syntheses and crystal structures of two pentaborates, Na3CaB5O10 and Na3MgB5O10. Solid State Sci 9(8):678–685CrossRefGoogle Scholar
  127. Chen X, Li M, Chang X, Zang H, Xiao W (2008b) Synthesis and crystal structure of a new calcium borate, CaB6O10. J Alloys Compd 464(1):332–336CrossRefGoogle Scholar
  128. Chen X, Song F, Chang X, Zang H, Xiao W (2009) Syntheses and characterization of two oxoborates, (Pb3O)2(BO3)2MO4 (M = Cr,Mo). J Solid State Chem 182:3091–3097CrossRefGoogle Scholar
  129. Chen X, Yang C, Chang X, Zang H, Xiao W (2010) Synthesis, crystal structure, and optical properties of a novel pentaborate, K2NaZnB5O10. J Alloys Compd 492(1):543–547CrossRefGoogle Scholar
  130. Chen X, Yang C, Chu Z, Chang X, Zang H, Xiao W (2011) Synthesis, spectrum properties, and crystal structure of a new pentaborate, Na2.18K0.82SrB5O10. J ChemCrystallogr 41(6):816–822CrossRefGoogle Scholar
  131. Chen X, Wu L, Chang X, Xiao W (2014a) Synthesis, crystal structure, and spectrum properties of a new quaternary borate NaSr7AlB18O36 with the cyclic B18O3618− group, notation of 6×(3 [2Δ+ 1T]). J Chem Crystallogr 44(11–12):572–579CrossRefGoogle Scholar
  132. Chen Y, Zhang Y, Feng S (2014b) Hydrothermal synthesis and properties of pigments Chinese purple BaCuSi2O6 and dark blue BaCu2Si2O7. Dyes Pigm 105:167–173CrossRefGoogle Scholar
  133. Chen F, Zhao J, Xu J, Wu Y (2015a) Synthesis, structure, and optical properties of BiCu2(TeO3)(SO4)(OH)3. Z anorg allg Chemie 641(3–4):568–572CrossRefGoogle Scholar
  134. Chitra S, Kalyani P, Yebka B, Mohan T, Haro-Poniatowski E, Gangadharan R, Julien C (2000) Synthesis, characterization and electrochemical studies of LiNiVO4 cathode material in rechargeable lithium batteries. Mater Chem Phys 65(1):32–37CrossRefGoogle Scholar
  135. Choisnet J, Deschanvres A, Tarte P (1975) Spectres vibrationnels des silicates et germinates renfermant des anneaux, M3O9 (M = Si, Ge) – I. Attribution des frequencies caractéristiques de l'anneau M3O9, dans les composés de type bénitoïte, wadéite et tétragermanate. Spectrochim Acta A 31(8):1023–1034. (in French)CrossRefGoogle Scholar
  136. Chon MP, Tan KB, Khaw CC, Zainal Z, Yap YT, Chen SK, Tan PY (2014) Investigation of the phase formation and dielectric properties of Bi7Ta3O18. J Alloys Compounds 590:479–485CrossRefGoogle Scholar
  137. Chopin C, Ferraris G, Prencipe M, Brunet F, Medenbach O (2001) Raadeite, Mg7(PO4)2(OH)8: a new dense-packed phosphate from Modum (Norway). Eur J Mineral 13(2):319–327CrossRefGoogle Scholar
  138. Chouaib S, Rhaiem AB, Guidara K (2011) Dielectric relaxation and ionic conductivity studies of Na2ZnP2O7. Bull Mater Sci 34(4):915–920CrossRefGoogle Scholar
  139. Chukanov NV (2014) Infrared spectra of mineral species: extended library. Springer-Verlag GmbH, Dordrecht. (1716 pp)Google Scholar
  140. Chukanov NV, Chervonnyi AD (2016) Infrared spectroscopy of minerals and related compounds. Springer, Cham, p 1109CrossRefGoogle Scholar
  141. Chukanov NV, Zubkova NV, Buhl J-C, Pekov IV, Ksenofontov DA, Depmeier W, Pushcharovskii DY (2011) Crystal structure of nitrate cancrinite synthesized under low-temperature hydrothermal conditions. Doklady Earth Sci 438(1):669–672CrossRefGoogle Scholar
  142. Chukanov NV, Nedelko VV, Blinova LN, Korshunova LA, Olysych LV, Lykova IS, Pekov IV, Buhl J-C, Depmeier W (2012a) The role of additional anions in microporous aluminosilicates with cancrinite-type framework. Russ J Phys Chem B 6(5):15–23CrossRefGoogle Scholar
  143. Clavier N, Crétaz F, Szenknect S, Mesbah A, Poinssot C, Descostes M, Dacheux N (2016) Vibrational spectroscopy of synthetic analogues of ankoleite, chernikovite and intermediate solid solution. Spectrochim Acta A 156:143–150CrossRefGoogle Scholar
  144. Clearfield A, Roberts BD, Subramanian MA (1984) Preparation of (NH4)Zr2(PO4)3 and HZr2(PO4)3. Mater Res Bull 19:219–226CrossRefGoogle Scholar
  145. Clearfield A, Bortun AI, Bortun LN, Cahill RA (1997) Synthesis and characterization of a novel layered sodium titanium silicate Na2TiSi2O7∙2H2O. Solvent Extraction Ion Exchange 15(2):285–304CrossRefGoogle Scholar
  146. Cody CA, Levitt RC, Viswanath RS, Miller PJ (1978) Vibrational spectra of alkali hydrogen selenites, selenous acid, and their deuterated analogs. J Solid State Chem 26(3):281–291CrossRefGoogle Scholar
  147. Colomban P, Courret H, Romain F, Gouadec G, Michel D (2000) Sol-gel-prepared pure and lithium-doped hexacelsian polymorphs: an infrared, Raman, and thermal expansion study of the β-phase stabilization by frozen short-range disorder. J Am Ceram Soc 83(12):2974–2982CrossRefGoogle Scholar
  148. Conti C, Casati M, Colombo C, Possenti E, Realini M, Gatta GD, Merlini M, Brambilla L, Zerbi G (2015) Synthesis of calcium oxalate trihydrate: new data by vibrational spectroscopy and synchrotron X-ray diffraction. Spectrochim Acta A 150:721–730CrossRefGoogle Scholar
  149. Cooper MA, Abdu YA, Hawthorne FC, Kampf AR (2013a) The crystal structure of comancheite, Hg2+55N3-24(OH,NH2)4(Cl,Br)34, and crystal-chemical and spectroscopic discrimination of N3− and O2− anions in Hg2+ compounds. Min Mag 77(8):3217–3237CrossRefGoogle Scholar
  150. Cooper MA, Abdu YA, Hawthorne FC, Kampf AR (2016a) The crystal structure of gianellaite, [(NHg2)2](SO4)(H2O)x, a framework of (NHg4) tetrahedra with ordered (SO4) groups in the interstices. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.028CrossRefGoogle Scholar
  151. Cooper MA, Hawthorne FC, Garcia-Veígas J, Alcobé X, Helvaci C, Grew ES, Ball NA (2016b) Fontarnauite, (Na,K)2(Sr,Ca)(SO4)[B5O8(OH)](H2O)2, a new sulfate-borate mineral from Doğanlar (Emet), Kütahya Province, Western Anatolia, Turkey. Can Mineral 53(3):1–20.  https://doi.org/10.3749/canmin.1400088CrossRefGoogle Scholar
  152. Cooper M, Hawthorne F, Langhof J, Hålenius U, Holtstam D (2016c) Wiklundite, ideally Pb2[4](Mn2+,Zn)3(Fe3+,Mn2+)2(Mn2+,Mg)19(As3+O3)2[(Si,As5+)O4]6(OH)18Cl6, a new mineral from Långban, Filipstad, Värmland, Sweden: description and crystal structure. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.136CrossRefGoogle Scholar
  153. Cornette J, Merle-Méjean T, Mirgorodsky A, Colas M, Smirnov M, Masson O, Thomas P (2011) Vibrational spectra of rhombohedral TeO3 compared to those of ReO3-like proto-phase and α-TeO2 (paratellurite): lattice dynamic and crystal chemistry aspects. J Raman Spectrosc 42(4):758–764CrossRefGoogle Scholar
  154. Corsmit AF, Blasse G (1974) The infrared spectrum of Ba2NiTeO6. J Inorg Nucl Chem 36(5):1155–1156CrossRefGoogle Scholar
  155. Cui M, Wang Y, Liu X, Zhu J, Sun J, Lv N, Meng C (2014) Solvothermal conversion of magadiite into zeolite omega in a glycerol–water system. J Chem Technol Biotechnol 89(3):419–424CrossRefGoogle Scholar
  156. Dacheux N, Clavier N, Wallez G, Quarton M (2007) Crystal structures of Th(OH)PO4, U(OH)PO4 and Th2O(PO4)2. Condensation mechanism of MIV(OH)PO4 (M = Th, U) into M2O(PO4)2. Solid State Sci 9(7):619–627CrossRefGoogle Scholar
  157. Dahm M, Adam A (2001) Ab-initio-Berechnung des Tetracarbonatoscandat-Ions in Na5Sc(CO3)3∙2H2O. Ein Kristallstruktur Bestimmung, Schwingungsspektren und thermischer Abbau. Z anorg allg Chemie 627(8):2023–2031. (in German)CrossRefGoogle Scholar
  158. Dal Bo F, Hatert F, Baijot M (2014) Crystal chemistry of synthetic M2+Be2P2O8 (M2+ = Ca, Sr, Pb, Ba) beryllophosphates. Can Mineral 52(2):337–350CrossRefGoogle Scholar
  159. Dardenne K, Vivien D, Ribot F, Chottard G, Huguenin D (1998) Mn (V) polyhedron size in Ba10((P,Mn)O4)6F2: vibrational spectroscopy and EXAFS study. Eur J Solid State Inorg Chem 35(6):419–431CrossRefGoogle Scholar
  160. Daturi M, Busca G, Borel MM, Leclaire A, Piaggio P (1997) Vibrational and XRD study of the system CdWO4-CdMoO4. J Phys Chem B 101(22):4358–4369CrossRefGoogle Scholar
  161. Daub M, Kazmierczak K, Gross P, Höppe H, Hillebrecht H (2013) Exploring a new structure family: alkali borosulfates Na5[B(SO4)4], A3[B(SO4)3] (A = K, Rb), Li[B(SO4)2], and Li[B(S2O7)2]. Inorg Chem 52:6011–6020CrossRefGoogle Scholar
  162. De Beer WHJ, Heyns AM, Richter PW, Clark JB (1980) High-pressure/high-temperature phase relations and vibrational spectra of CsSbF6. J Solid State Chem 33(3):283–288CrossRefGoogle Scholar
  163. De Waal D, Heyns AM (1992) A reinvestigation of the thermal decomposition products of (NH4)2CrO4 and (NH4)2Cr2O7. J Alloys Compd 187(1):171–180CrossRefGoogle Scholar
  164. Del Bosque IS, Martínez-Ramírez S, Blanco-Varela MT (2014) FTIR study of the effect of temperature and nanosilica on the nano structure of C–S–H gel formed by hydrating tricalcium silicate. Constr Build Mater 52:314–323CrossRefGoogle Scholar
  165. Demartin F, Gramaccioli CM, Campostrini I (2010) Pyracmonite, (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. Can Mineral 48:307–313CrossRefGoogle Scholar
  166. Demartin F, Castellano C, Gramaccioli CM (2015) Campostriniite, (Bi3+,Na)3(NH4,K)2Na2(SO4)6∙H2O, a new sulfate isostructural with görgeyite, from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineral Mag 79(4):1007–1018CrossRefGoogle Scholar
  167. Derun EM, Kipcak AS, Senberber FT, Yilmaz MS (2015) Characterization and thermal dehydration kinetics of admontite mineral hydrothermally synthesized from magnesium oxide and boric acid precursor. Res Chem Intermed 41(2):853–866CrossRefGoogle Scholar
  168. Devarajan V, Shurvell HF (1977) Vibrational spectra and normal coordinate analysis of crystalline lithium metasilicate. Can J Chem 55(13):2559–2563CrossRefGoogle Scholar
  169. Dey B, Jain YS, Verma AL (1982) Infrared and Raman spectroscopic studies of KHSO4 crystals. J Raman Spectrosc 13(3):209–212CrossRefGoogle Scholar
  170. Dhandapani M, Thyagu L, Prakash PA, Amirthaganesan G, Kandhaswamy MA, Srinivasan V (2006) Synthesis and characterization of potassium magnesium sulphatehexahydrate crystals. Cryst Res Technol 41(4):328–331CrossRefGoogle Scholar
  171. Dhas NA, Gedanken A (1997) Characterization of sonochemically prepared unsupported and silica-supported nanostructured pentavalent molybdenum oxide. J Phys Chem B 101(46):9495–9503CrossRefGoogle Scholar
  172. Diez RP, Baran EJ, Lavat AE, Grasselli MC (1995) Vibrational and electronic spectra of some mixed oxides belonging to the Sr2PbO4 structural type. J Phys Chem Solids 56(1):135–139CrossRefGoogle Scholar
  173. Djurek D, Prester M, Drobac DJ, Ivanda M, Vojta D (2015) Magnetic properties of nanoscaled paramelaconite Cu4O3−x (x = 0.0 and 0.5). J Magnetism Magnetic Mater 373:183–187CrossRefGoogle Scholar
  174. Dondur V, Dimitrijević R, Kremenović A, Damjanović L, Kićanović M, Cheong HM, Macura S (2005) Phase transformation of hexacelsians doped with Li, Na and Ca. Mater Sci Forum 494:107–112CrossRefGoogle Scholar
  175. Dong L, Pan S, Yang Z, Zhao W, Dong X, Wang Y, Huang Y (2012) Synthesis, crystal structure, and properties of a new lead aluminum fluoride borate, Pb6Al(BO3)2OF7. Z anorg allg Chemie 638(14):2280–2285Google Scholar
  176. Echigo T, Kimata M, Kyono A, Shimizu M, Hatta T (2005) Re-investigation of the crystal structure of whewellite [Ca(C2O4)∙H2O] and the dehydration mechanism of caoxite [Ca(C2O4)∙3H2O]. Mineral Mag 69(1):77–88CrossRefGoogle Scholar
  177. El-Metwally N, Al Thani MJ (1989) Preparation and infrared spectra of (Cu(O)(H2O)3) and (Cu2(O)(C1)2(H2O)2) complexes formed in the reactions of Cu(II) salts with urea. J Phys Chem Solids 50(2):183–186CrossRefGoogle Scholar
  178. Engel G (1973) Infrarotspektroskopische und röntgenographische Untersuchungen von Bleihydroxylapatit, Bleioxyapatit und Bleialkaliapatiten. J Solid State Chem 6(2):286–292. (in German)CrossRefGoogle Scholar
  179. English RB, Heyns AM (1984) An infrared, Raman, and single-crystal X-ray study of cesium hexafluorophosphate. J Crystallogr Spectrosc Res 14(6):531–540CrossRefGoogle Scholar
  180. Equeenuddin SM (2015) Occurrence of alpersite at Malanjkhand copper mine, India. Environ Earth Sci 73(7):3849–3853CrossRefGoogle Scholar
  181. Escobar ME, Baran EJ (1982) Darstellung und Eigenschaften einiger neuer Arsenat-und Vanadat-Halogen-Apatite. Z anorg allg Chemie 489(1):139–146. (in German)CrossRefGoogle Scholar
  182. Essehli R, El Bali B, Benmokhtar S, Fejfarová K, Dusek M (2009) Hydrothermal synthesis, structural and physico-chemical characterizations of two Nasicon phosphates: M0.50IITi2(PO4)3 (M = Mn, Co). Mater Res Bull 44(7):1502–1510CrossRefGoogle Scholar
  183. Essehli R, El Bali B, Benmokhtar S, Fuess H, Svoboda I, Obbade S (2010) Synthesis, crystal structure and infrared spectroscopy of a new non-centrosymmetric mixed-anion phosphate Na4Mg3(PO4)2(P2O7). J Alloys Compd 493(1):654–660CrossRefGoogle Scholar
  184. Ezzaafrani M, Ennaciri A, Harcharras M, Capitelli F (2014) Spectroscopic and structural investigation of BaNaP3O9∙3H2O cyclotriphosphate. Phosphorus Sulfur Silicon Relat Elem 189(12):1841–1850.  https://doi.org/10.1080/10426507.2014.906419CrossRefGoogle Scholar
  185. Fakhfakh M, Madani A, Jouini N (2003) A3Nb5O11(PO4)2 (A = Tl, K, Na) compounds: synthesis, crystal and vibrational characterization, conductivity study. Mater Res Bull 38(7):1215–1226CrossRefGoogle Scholar
  186. Falk M, Knop O (1977) Infrared studies of water in crystalline hydrates: K2HgCl4∙H2O. Can J Chem 55(10):1736–1744CrossRefGoogle Scholar
  187. Fan Y, Hua Li G, Yang L, Ming Zhang Z, Chen Y, You Song T, HuaFeng S (2005) Synthesis, crystal structure, and magnetic properties of a three-dimensional hydroxide sulfate: Mn5(SO4)(OH)8. Eur J Inorg Chem 2005(16):3359–3364CrossRefGoogle Scholar
  188. Fan X, Pan S, Hou X, Tian X, Han J (2010) Flux growth and morphology analysis of Na3VO2B6O11 crystals. J Cryst Growth 312(15):2263–2266CrossRefGoogle Scholar
  189. Fang Y, Ritter C, White T (2011) The crystal chemistry of Ca10–y(SiO4)3(SO4)3Cl2–x–2yFx ellestadite. Inorg Chem 50(24):12641–12650CrossRefGoogle Scholar
  190. Farmer VC, Fraser AR, Tait JM (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochim Cosmochim Acta 43(9):1417–1420CrossRefGoogle Scholar
  191. Feng J-H, Hu C-L, Xu X, Kong F, Mao J-G (2015a) Na2RE2TeO4(BO3)2 (RE = Y, Dy–Lu): luminescent and structural studies on a series of mixed metal borotellurates. Inorg Chem 54(5):2447–2454CrossRefGoogle Scholar
  192. Fenske F, Lange H, Oertel G, Reinsperger GU, Schumann J, Selle B (1996) Characterization of semiconducting silicide films by infrared vibrational spectroscopy. Mater Chem Phys 43(3):238–242CrossRefGoogle Scholar
  193. Férid M, Horchani-Naifer K (2004) Synthesis, crystal structure and vibrational spectra of a new form of diphosphate NaLaP2O7. Mater Res Bull 39(14):2209–2217CrossRefGoogle Scholar
  194. Filipek E, Walczak J, Tabero P (1998) Synthesis and some properties of the phase Cr2V4O13. J Alloys Compd 265(1):121–124CrossRefGoogle Scholar
  195. Fillaux F, Lautié A, Tomkinson J, Kearley GJ (1991) Proton transfer dynamics in the hydrogen bond. Inelastic neutron scattering, infrared and Raman spectra of Na3H(SO4)2, K3H(SO4)2 and Rb3H(SO4)2. Chem Phys 154(1):135–144CrossRefGoogle Scholar
  196. Fitouri I, Falah C, Boughzala H (2015) Synthesis, infrared (IR) spectroscopy and single crystal structural study of a new arsenate Cs7Fe7O2(AsO4)8. J Chem Crystallogr 45(5):231–237CrossRefGoogle Scholar
  197. Fomichev VV, Kondratov OI (1994) Vibrational spectra of compounds with the wolframite structure. Spectrochim Acta A 50(6):1113–1120CrossRefGoogle Scholar
  198. Forray FL, Smith AML, Navrotsky A, Wright K, Hudson-Edwards KA, Dubbin WE (2014) Synthesis, characterization and thermochemistry of synthetic Pb–As, Pb–Cu and Pb–Zn jarosites. Geochim Cosmochim Acta 127:107–119CrossRefGoogle Scholar
  199. Furukawa T, Brawer SA, White WB (1979) Raman and infrared spectroscopic studies of the crystalline phases in the system Pb2SiO4-PbSiO3. J Am Ceram Soc 62(7–8):351–356CrossRefGoogle Scholar
  200. Gabal MA, Elroby SA, Obaid AY (2012) Synthesis and characterization of nano-sized ceria powder via oxalate decomposition route. Powder Technol 229:112–118CrossRefGoogle Scholar
  201. Gaitán M, Jerez A, Pico C, Veiga ML (1985) Ditellurium(IV) trioxide selenate: a new solid phase in the system Te–Se–O2. Mater Res Bull 20(9):1069–1074CrossRefGoogle Scholar
  202. Galera-Gomez PA, Sanz-Pinilla S, Otero-Aenlle E, Gonzáles-Díaz PF (1982) Infrared spectra of arsenate and vanadate strontium apatites. Spectrochim Acta A 38(2):253–259CrossRefGoogle Scholar
  203. Galuskina IO, Krüger B, Galuskin EV, Armbruster T, Gazeev VM, Włodyka R, Dulski M, Dzierżanowski P (2015) Fluorchegemite, Ca7(SiO4)3F2, a new mineral from the edgrewite-bearing endoskarn zone of an altered xenolith in ignimbrites from upper Chegem caldera, Northern Caucasus, Kabardino-Balkaria, Russia: occurrence, crystal structure, and new data on the mineral assemblages. Can Mineral 53(2):325–344CrossRefGoogle Scholar
  204. Gasanly NM, Magomedov AZ, Melnik NN, Salamov BG (1993) Raman and infrared studies of AgIn5S8 and CuIn5S8 single crystals. Phys Status Solidi (b) 177(1):K31–K35CrossRefGoogle Scholar
  205. Gatta GD, Rotiroti N, Bersani D, Bellatreccia F, Della Ventura G, Rizzato S (2015a) A multi-methodological study of the (K,Ca)-variety of the zeolite merlinoite. Mineral Mag 79(7):1755–1767CrossRefGoogle Scholar
  206. Gatta G, Bosi F, Fernandez Diaz MT, Hålenius U (2016) H-bonding scheme in allactite: a combined single-crystal neutron/X-ray diffraction, EPMA-WDS, FTIR and OAS study. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.020CrossRefGoogle Scholar
  207. Gavarri JR, Chater R, Ziółkowski J (1988) The chemical bonds in MeSb2O4 (Me = Mn, Ni, Fe, Zn) isomorphous compounds: thermal expansion, force constants, energies. J Solid State Chem 73(2):305–316CrossRefGoogle Scholar
  208. Geisinger KL, Ross NL, McMillan PF, Navrotsky A (1987) K2Si4O9; energetics and vibrational spectra of glass, sheet silicate, and wadeite-type phases. Am Mineral 72(9–10):984–994Google Scholar
  209. Geisler T, Berndt J, Meyer HW, Pollok K, Putnis A (2004) Low-temperature aqueous alteration of crystalline pyrochlore: correspondence between nature and experiment. Mineral Mag 68(6):905–922CrossRefGoogle Scholar
  210. Georgiev M, Wildner M, Stoilova D, Karadjova V (2007) Preparation, crystal structure and infrared spectroscopy of the new compound rubidium beryllium sulfate dihydrate, Rb2Be(SO4)2∙2H2O. Vibr Spectrosc 44(2):266–272CrossRefGoogle Scholar
  211. Georgiev M, Bancheva T, Marinova D, Stoyanova R, Stoilova D (2016) On the formation of solid solutions with blödite-and kröhnkite-type structures. I. Synthesis, vibrational and EPR spectroscopic investigations of Na2Zn1-xCux(SO4)2∙4H2O (0<x< 0.14). IJSRST 2(5):279–292Google Scholar
  212. Ghorbel K, Litaiem H, Ktari L, Garcia-Granda S, Dammak M (2015) X-ray single crystal, thermal analysis and vibrational study of (NH4)2(SO4)0.92H(AsO4)0.08∙Te(OH)6. J Molec Struct 1079:225–231CrossRefGoogle Scholar
  213. Godelitsas A, Astilleros JM, Hallam KR, Löns J, Putnis A (2003) Microscopic and spectrosopic investigation of the calcite surface interacted with Hg(II) in aqueous solutions. Mineral Mag 67(6):1193–1204CrossRefGoogle Scholar
  214. Golubev YA, Martirosyan OV (2012) The structure of the natural fossil resins of North Eurasia according to IR-spectroscopy and microscopic data. Phys Chem Miner 39:247–258CrossRefGoogle Scholar
  215. Gomez MA, Ventruti G, Celikin M, Assaaoudi H, Putz H, Becze L, Lee KE, Demopoulos GP (2013) The nature of synthetic basic ferric arsenate sulfate (Fe(AsO4)1−x(SO4)x(OH)x) and basic ferric sulfate (FeOHSO4): their crystallographic, molecular and electronic structure with applications in the environment and energy. RSC Adv 3(37):16840–16849CrossRefGoogle Scholar
  216. Gönen ZS, Kizilyalli M, Pamuk HÖ (2000) Synthesis and characterization of Na2GdOPO4 and Na2LaOPO4. J Alloys Compd 303:416–420CrossRefGoogle Scholar
  217. Gopinath AB, Devanarayanan S, Castro A (1998) Vibrational spectra of three anhydrous rare-earth selenites R2Se3O9 (R = La, Sm and Lu). Spectrochim Acta A 54(6):785–791CrossRefGoogle Scholar
  218. Gottschall R, Schöllhorn R, Muhler M, Jansen N, Walcher D, Gütlich P (1998) Electronic state of nickel in barium nickel oxide, BaNiO3. Inorg Chem 37(7):1513–1518CrossRefGoogle Scholar
  219. Goypiron A, De Villepin J, Novak A (1980) Raman and infrared study of KHSO4 crystal. J Raman Spectrosc 9(5):297–303CrossRefGoogle Scholar
  220. Graeser S, Schwander H, Demartin F, Gramaccioli CM, Pilati T, Reusser E (1994) Fetiasite (Fe2+,Fe3+,Ti)3O2[As2O5], a new arsenite mineral: its description and structure determination. Am Mineral 79:996–1002Google Scholar
  221. Grandhe BK, Bandi VR, Jang K, Lee HS, Shin DS, Yi SS, Jeong JH (2012) Effect of sintering atmosphere and lithium ion co-doping on photoluminescence properties of NaCaPO4: Eu2+ phosphor. Ceram Int 38(8):6273–6279CrossRefGoogle Scholar
  222. Grasselli MC, Baran EJ (1984) IR spectroscopic characterization of tetrabasic lead sulphate. J Mater Sci Lett 3(11):949–950CrossRefGoogle Scholar
  223. Grey IE, Keck E, Mumme WG, Pring A, Macrae CM, Glenn AM, Davidson CJ, Shamks FL, Mills SJ (2016a) Kummerite, Mn2+Fe3+Al(PO4)2(OH)2∙8H2O, a new laueite-group mineral from the HagendorfSüd pegmatite, Bavaria, with ordering of Al and Fe3+. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.061CrossRefGoogle Scholar
  224. Grey IE, Betterton J, Kampf AR, Macrae CM, Shanks FL, Price JR (2016b) Penberthycroftite, [Al6(AsO4)3(OH)9(H2O)5]∙8H2O, a second new hydrated aluminium arsenate mineral from the Penberthy Croft mine, St. Hilary, Cornwall. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.069CrossRefGoogle Scholar
  225. Grey I, Keck E, Kampf AR, Macrae CM, Glenn AM, Price JR (2016c) Wilhelmgümbelite, [ZnFe2+Fe3+3(PO4)3(OH)4(H2O)5]∙2H2O, a new schoonerite-related mineral from the Hagendorf Süd pegmatite, Bavaria. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.098CrossRefGoogle Scholar
  226. Grice JD, Rowe R, Poirier G (2015) Hydroterskite: a new mineral species from the Saint-Amable Sill, Quebec, and acomparison with terskite and elpidite. Can Mineral 53(5):821–832CrossRefGoogle Scholar
  227. Grishchenko RO, Emelina AL, Makarov PY (2013) Thermodynamic properties and thermal behavior of Friedel’s salt. Thermochim Acta 570:74–79CrossRefGoogle Scholar
  228. Grosse P, Richter W (1970) Absorption spectra of tellurium in the spectral range from 18 to 460 cm−1. Phys Status Solidi B 41(1):239–246CrossRefGoogle Scholar
  229. Gualtieri AF (2000) Study of NH4+ in the zeolite phillipsite by combined synchrotron powder diffraction and IR spectroscopy. Acta Crystallogr B 56(4):584–593CrossRefGoogle Scholar
  230. Guilherme LR, Massabni AC, Dametto AC, de Souza Corrêa R, de Araujo AS (2010) Synthesis, infrared spectroscopy and crystal structure determination of a new decavanadate. J Chem Crystallogr 40(11):897–901CrossRefGoogle Scholar
  231. Güler H, Tekin B (2009) Synthesis and crystal structure CoNi2(BO3)2. Inorg Mater 45(5):538–542CrossRefGoogle Scholar
  232. Günter JR, Amberg M (1989) “High-temperature” magnesium tungstate, MgWO4, prepared at moderate temperature. Solid State Ionics 32:141–146CrossRefGoogle Scholar
  233. Guo F, Fu P, Wang J, Liu F, Yang Z, Wu Y (2000) Hydrothermal synthesis, characterization and nonlinear optical effect of orthorhombic phase Ca2B6O11∙H2O. Chinese Sci Bull 45(19):1756–1760CrossRefGoogle Scholar
  234. Guo X, Ushakov SV, Curtius H, Bosbach D, Navrotsky A (2014a) Energetics of metastudtite and implications for nuclear waste alteration. Proc Natl Acad Sci 111(50):17737–17742CrossRefGoogle Scholar
  235. Guo X, Wu H, Pan S, Yang Z, Yu H, Zhang B, Han J, Zhang F (2014b) Synthesis, crystal structure, and characterization of a congruent melting compound magnesium strontium diborate MgSrB2O5. Z anor gallg Chemie 640(8–9):1805–1809CrossRefGoogle Scholar
  236. Gurzhiy VV, Tyumentseva OV, Kornyakov IV, Krivovichev SV, Tananaev IG (2014) The role of potassium atoms in the formation of uranyl selenates: the crystal structure and synthesis of two novel compounds. J Geo Sci 59(2):123–133Google Scholar
  237. Hadrich A, Lautié A, Mhiri T, Romain F (2001) Vibrational behaviour of K2HPO4, K2HPO4∙3H2O and their deuterated derivatives with temperature. Vib Spectrosc 26(1):51–64CrossRefGoogle Scholar
  238. Haeuseler H, Haxhillazi G (2003) Vibrational spectra of the peroxochromates (NH4)3[Cr(O2)4], K3[Cr(O2)4] and Rb3[Cr(O2)4]. J Raman Spectrosc 34(5):339–344CrossRefGoogle Scholar
  239. Hahn RB (1951) Phosphates of niobium and tantalum. J Amer Chem Soc 73:5091–5093CrossRefGoogle Scholar
  240. Hamdouni M, Walha S, Kabadou A, Duhayon C, Sutter JP (2013) Synthesis and crystal structures of various phases of the microporous three-dimensional coordination polymer [Zr(OH)2(C2O4)]n. Crystal Growth Design 13(11):5100–5106CrossRefGoogle Scholar
  241. Han S, Pan S, Yang Z, Wang Y, Zhang B, Zhang M, Huang Z, Dong L, Yu H (2013) Synthesis, structure characterization, and optical properties of the aluminosilicate Li2Na3AlSi2O8. Z anor gallg Chemie 639(5):779–783CrossRefGoogle Scholar
  242. Hanuza J, Haznar A, Mączka M, Pietraszko A, Lemiec A, Van der Maas JH, Lutz ETG (1997) Structure and vibrational properties of tetragonal scheelite NaBi(MoO4)2. J Raman Spectrosc 28(12):953–963CrossRefGoogle Scholar
  243. Hanuza J, Mączka M, Lorenc J, Kaminskii AA, Bohaty L, Becker P (2008a) Polarised IR and Raman spectra of non-centrosymmetric Na3Li(SeO4)2∙6H2O crystal – a new Raman laser material. Spectrochim Acta A 71(1):68–72CrossRefGoogle Scholar
  244. Hanuza J, Mączka M, Lorenc J, Kaminskii AA, Becker P, Bohatý L (2008b) Polarized Raman and IR spectra of non-centrosymmetric PbB4O7 single crystal. J Raman Spectrosc 39(3):409–414CrossRefGoogle Scholar
  245. Hanuza J, Ptak M, Mączka M, Hermanowicz K, Lorenc J, Kaminskii AA (2012) Polarized IR and Raman spectra of Ca2MgSi2O7, Ca2ZnSi2O7 and Sr2MgSi2O7 single crystals: temperature-dependent studies of commensurate to incommensurate and incommensurate to normal phase transitions. J Solid State Chem 191:90–101CrossRefGoogle Scholar
  246. Harcharras M, Capitelli F, Ennaciri A, Brouzi K, Moliterni AGG, Mattei G, Bertolasi V (2003) Synthesis, X-ray crystal structure and vibrational spectroscopy of the acidic pyrophosphate KMg0.5H2P2O7∙H2O. J Solid State Chem 176(1):27–32CrossRefGoogle Scholar
  247. Haring MMM, McDonald AM (2016) Nolzeite, Na(Mn,□)2[Si3(B,Si)O9(OH)2]∙2H2O, a new pyroxenoid mineral. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.089CrossRefGoogle Scholar
  248. Harrison KL, Manthiram A (2013) Microwave-assisted solvothermal synthesis and characterization of various polymorphs of LiVOPO4. Mech Eng 25(9):1751–1760Google Scholar
  249. Harvey KB, Morrow BA, Shurvell HF (1963) The infrared absorption of some crystalline inorganic formates. Can J Chem 41(5):1181–1187CrossRefGoogle Scholar
  250. Hatert F, Rebbouh L, Hermann RP, Fransolet A-M, Long GJ, Grandjean F (2005) Crystal chemistry of the hydrothermally synthesized Na2(Mn1-xFe2+x)2Fe3+(PO4)3 alluaudite-type solid solution. Am Mineral 90(4):653–662CrossRefGoogle Scholar
  251. He M, Chen XL, Zhou T, Hu BQ, Xu YP, Xu T (2001) Crystal structure and infrared spectra of Na2Al2B2O7. J Alloys Compd 327(1):210–214CrossRefGoogle Scholar
  252. He M, Chen XL, Gramlich V, Baerlocher C, Zhou T, Hu BQ (2002) Synthesis, structure, and thermal stability of Li3AlB2O6. J Solid State Chem 163(2):369–376CrossRefGoogle Scholar
  253. Helan M, Berchmans LJ (2011) Low-temperature synthesis of lithium manganese oxide using LiCl-Li2CO3 and manganese acetate eutectic mixture. Mater Manuf Process 26(11):1369–1373CrossRefGoogle Scholar
  254. Heyns AM, van den Berg MM (1995) KSbF6 revisited. I – a Raman and infrared study of the tetragonal phase I. J Raman Spectrosc 26(8–9):847–854CrossRefGoogle Scholar
  255. Heyns AM, Richter PW, Clark JB (1981) The vibrational spectra and crystallographic properties of CsPF6. J Solid State Chem 39(1):106–113CrossRefGoogle Scholar
  256. Hinteregger E, Wurst K, Niederwieser N, Heymann G, Huppertz H (2014) Pressure-supported crystal growth and single-crystal structure determination of Li2SiF6. Z Kristallogr 229(2):77–82Google Scholar
  257. Hirano S-I, Hayashi T, Kageyama T (1987) Synthesis of LiAlO2 powder by hydrolysis of metal alkoxides. J Am Ceram Soc 70(3):171–174CrossRefGoogle Scholar
  258. Hoekstra HR, Siegel S (1971) Preparation and properties of Cr2UO6. J Inorg Nucl Chem 33(9):2867–2873CrossRefGoogle Scholar
  259. Hofmeister AM, Ito E (1992) Thermodynamic properties of MgSiO3 ilmenite from vibrational spectra. Phys Chem Minerals 18(7):423–432CrossRefGoogle Scholar
  260. Hofmeister AM, Hoering TC, Virgo D (1987) Vibrational spectroscopy of beryllium aluminosilicates: heat capacity calculations from band assignments. Phys Chem Minerals 14(3):205–224CrossRefGoogle Scholar
  261. Hosterman BD, Farley JW, Johnson AL (2013) Spectroscopic study of the vibrational modes of magnesium nickel chromite, MgxNi1−xCr2O4. J Phys Chem Solids 74(7):985–990CrossRefGoogle Scholar
  262. Houlbert S, Chaabane TB, Bardeau JF, Bulou A, Smiri L (2004) Vibrational study of Li6P6O18∙3H2O and ab initio calculations in P6O18 and P6O18∙3H2O. Spectrochim Acta A 60(1):251–259CrossRefGoogle Scholar
  263. Hu T, Lin JB, Kong F, Mao JG (2008) Mg7V4O16(OH)2∙H2O: a magnesium vanadate with a novel 3D magnesium oxide open framework. Inorg Chem Comm 11(9):1012–1014CrossRefGoogle Scholar
  264. Hu S, Johnsson M, Lemmens P, Schmid D, Menzel D, Tapp J, Möller A (2014) Acentric pseudo-kagome structures: the solid solution (Co1–xNix)3Sb4O6F6. Chem Mater 26(12):3631–3636CrossRefGoogle Scholar
  265. Huang J, Sleight AW (1992) Synthesis, crystal structure, and optical properties of a new bismuth magnesium vanadate: BiMg2VO6. J Solid State Chem 100(1):170–178CrossRefGoogle Scholar
  266. Huang Y, Jiang Z, Schwieger W (1998) A vibrational spectroscopic study of kanemite. Micropor Mesopor Mater 26(1):215–219CrossRefGoogle Scholar
  267. Huang Y, Jiang Z, Schwieger W (1999a) A structural investigation of the singly layered silicates, silinaite and makatite, by vibrational spectroscopy. Can J Chem 77(4):495–501CrossRefGoogle Scholar
  268. Huang Y, Jiang C, Cao Y, Shi L, Seo HJ (2009) Luminescence and microstructures of Eu3+-doped in triple phosphate Ca8MgR(PO4)7 (R = La, Gd, Y) with whitlockite structure. Mater Res Bull 44(4):793–798CrossRefGoogle Scholar
  269. Huang H, Yao W, He R, Chen C, Wang X, Zhang Y (2013a) Synthesis, crystal structure and optical properties of a new beryllium borate, CsBe4(BO3)3. Solid State Sci 18:105–109CrossRefGoogle Scholar
  270. Huang H, He R, Yao W, Lin Z, Chen C, Zhang Y (2013b) Noncentrosymmetric mixed-cation borate: crystal growth, structure and optical properties of Cs2Ca[B4O5(OH)4]2∙8H2O. J Crystal Growth 380:176–181CrossRefGoogle Scholar
  271. Huang Z, Pan S, Yang Z, Yu H, Dong X, Zhao W, Dong L, Su X (2013c) Pb8M(BO3)6 (M = Zn, Cd): two new isostructural lead borates compounds with two-dimensional ∞[Pb8B6O18]2− layer structure. Solid State Sci 15:73–78CrossRefGoogle Scholar
  272. Husson E, Repelin Y, Dao NQ, Brusset H (1977a) Etude par spectrophotométries d’absorption infrarouge et de diffusion Raman des niobates de structure columbite. Spectrochim Acta A 33(11):995–1001. (in French)CrossRefGoogle Scholar
  273. Husson E, Repelin Y, Dao NQ, Brusset H (1977b) Characterization of different bondings in some divalent metal niobates of columbite structure. Mater Res Bull 12(12):1199–1206CrossRefGoogle Scholar
  274. Husson E, Repelin Y, Vandenborre MT (1984) Spectres de vibration et champ de force de l’antimoniate et de l’arseniate de calcium CaSb2O6 et CaAs2O6. Spectrochim Acta A 40(11):1017–1020. (in French)CrossRefGoogle Scholar
  275. Husson E, Genet F, Lachgar A, Piffard Y (1988a) The vibrational spectra of some antimony phosphates. J Solid State Chem 75(2):305–312CrossRefGoogle Scholar
  276. Husson E, Lachgar A, Piffard Y (1988b) The vibrational spectra of the layered compounds K3Sb3M2O14·xH2O (M = P, As): normal coordinate analysis of K3Sb3P2O14·xH2O. J Solid State Chem 74:138–146CrossRefGoogle Scholar
  277. Ibáñez-Insa J, Elvira JJ, Llovet X, Pérez-Cano J, Oriols N, Busquets-Masó M, Hernández S (2017) Abellaite, NaPb2(CO3)2(OH), a new supergene mineral from the Eureka mine, Lleida province, Catalonia, Spain. Eur J Mineral.  https://doi.org/10.1127/ejm/2017/0029-2630Google Scholar
  278. Ignat’eva LN, Merkulov EB, Stremousova EA, Plotnichenko VG, Koltashev VV, Buznik VM (2006) Effect of bismuth trifluoride on the characteristics of fluoroindate glasses: the InF3-BiF3-BaF2 system. Russ J Inorg Chem 51(10):1641–1645CrossRefGoogle Scholar
  279. Ilieva D, Kovacheva D, Petkov C, Bogachev G (2001) Vibrational spectra of R(PO3)3 metaphosphates (R = Ga, In, Y, Sm, Gd, Dy). J Raman Spectrosc 32(11):893–899CrossRefGoogle Scholar
  280. Ishii M, Saeki M (1992) Raman and infrared spectroscopic studies of Ba2TiS5 and Ba2TiS4. Phys Stat Solidi B 169:K53–K58CrossRefGoogle Scholar
  281. Ishii M, Wada H (2000) Raman and infrared studies of a silver–tantalum sulfide with a layered structure. Mater Res Bull 35(8):1361–1368CrossRefGoogle Scholar
  282. Jacco JC (1986) The infrared spectra of KTiOPO4 and a K2O–P2O5–TiO2 glass. Mater Res Bull 21(10):1189–1194CrossRefGoogle Scholar
  283. Jakeš D, Sedláková LN, Moravec J, Germanič J (1968) The manganese, cobalt, nickel, copper, silver and mercury uranates. J Inorg Nucl Chem 30(2):525–533CrossRefGoogle Scholar
  284. Jambor JL, Roberts AC, Grice JD, Birkett TC, Groat LA, Zajac S (1998) Gerenite-(Y), (Ca,Na)2(Y,REE)3Si6O18∙2H2O, a new mineral species, and an associated Y-bearing gadolinite-group mineral, from the Strange Lake Peralkaline Complex, Quebec-Labrador. Can Mineral 36:793–800Google Scholar
  285. Jana YM, Halder P, Biswas AA, Roychowdhury A, Das D, Dey S, Kumar S (2016) Synthesis, X-ray Rietveld analysis, infrared and Mössbauer spectroscopy of R2FeSbO7 (R3+ = Y, Dy, Gd, Bi) pyrochlore solid solution. J Alloys Compd 656:226–236CrossRefGoogle Scholar
  286. Jaquet R, Haeuseler H (2008) Vibrational analysis of the H4I2O102− ion in CuH4I2O10∙6H2O. J Raman Spectrosc 39(5):599–606CrossRefGoogle Scholar
  287. Jeitschko W, Sleight AW, McClellan WR, Weiher JF (1976) A comprehensive study of disordered and ordered scheelite-related Bi3(FeO4)(MoO4)2. Acta Crystallographica B 32(4):1163–1170CrossRefGoogle Scholar
  288. Jiang XM, Xu ZN, Zhao ZY, Guo SP, Guo GC, Huang JS (2011) Syntheses, crystal structures, and optical properties of indium arsenic (III) oxide halides: In2(As2O5)Cl2 and In4(As2O5)(As3O7)Br3. Eur J Inorg Chem 2011(26):4069–4076CrossRefGoogle Scholar
  289. Jiang YR, Lee WW, Chen KT, Wang MC, Chang KH, Chen CC (2014) Hydrothermal synthesis of β-ZnMoO4 crystals and their photocatalytic degradation of Victoria Blue R and phenol. J Taiwan Inst Chem Eng 45(1):207–218CrossRefGoogle Scholar
  290. Johnston MG, Harrison WT (2011) New BaM2(SeO3)3nH2O (M= Co, Ni, Mn, Mg; n≈ 3) Zemannite-type frameworks: single-crystal structures of BaCo2(SeO3)3∙3H2O, BaMn2(SeO3)3∙3H2O and BaMg2(SeO3)3∙3H2O. Eur J Inorg Chem 2011(19):2967–2974CrossRefGoogle Scholar
  291. Jouini A, Férid M, Gâcon JC, Grosvalet L, Thozet A, Trabelsi-Ayadi M (2006) Crystal structure, vibrational spectra and optical properties of praseodymium cyclotriphosphate PrP3O9∙H2O. Mater Res Bull 41(7):1370–1377CrossRefGoogle Scholar
  292. Julien C, Rougier A, Haro-Poniatowski E, Nazri GA (1998) Vibrational spectroscopy of lithium manganese spinel oxides. Molec Cryst Liquid Cryst Sci Technol A 311(1):81–87.  https://doi.org/10.1080/10587259808042370CrossRefGoogle Scholar
  293. Kaczmarski M, Eichner A, Mielcarek S, Olejniczak I, Mróz B (2000) IR temperature study of internal vibrations in K3Na(SeO4)2. Vib Spectrosc 23(1):77–81CrossRefGoogle Scholar
  294. Kamoun LA, Remain F, Novak A (1988) Etude par spectrométrie infrarouge et Raman des phases cristallines basses temperatures de (NH4)3H(SO4)2. J Raman Spectrosc 19:329–335. (in French)CrossRefGoogle Scholar
  295. Kampf AR, Adams PM, Kolitsch U, Steele IM (2009a) Meurigite-Na, a new species, and the relationship between phosphofibrite and meurigite. Am Mineral 94(5–6):720–727CrossRefGoogle Scholar
  296. Kampf AR, Rossman GR, Housley RM (2009b) Plumbophyllite, a new species from the Blue Bell claims near Baker, San Bernardino County, California. Am Mineral 94(8–9):1198–1204CrossRefGoogle Scholar
  297. Kampf AR, Mills SJ, Nash BP (2016d) Pauladamsite, Cu4(SeO3)(SO4)(OH)4∙2H2O, a new mineral from the Santa Rosa mine, Darwin district, California, USA. Mineral Mag 80(6):949–958CrossRefGoogle Scholar
  298. Kampf AR, Plášil J, Kasatkin AV, Marty J, Čejka J, Lapčák L (2016f) Shumwayite, [(UO2)(SO4)(H2O)2]2∙H2O, a new uranyl sulfate mineral from Red Canyon, San Juan County, Utah, USA. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.091CrossRefGoogle Scholar
  299. Kampf AR, Richards RP, Nash BP, Murowchick JB, Rakovan JF (2016h) Carlsonite, (NH4)5Fe3+3O(SO4)6∙7H2O, and huizingite-(Al), (NH4)9Al3(SO4)8(OH)2·4H2O, two new minerals from a natural fire in an oil-bearing shale near Milan, Ohio. Am Mineral 101(9):2095–2107CrossRefGoogle Scholar
  300. Kampf AR, Rossman GR, Ma C (2016i) Kyawthuite, Bi3+Sb5+O4, a new gem mineral from Mogok, Burma (Myanmar). Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.102CrossRefGoogle Scholar
  301. Kaoua S, Krimi S, Péchev S, Gravereau P, Chaminade JP, Couzi M, El Jazouli A (2013) Synthesis, crystal structure, and vibrational spectroscopic and UV–visible studies of Cs2MnP2O7. J Solid State Chem 198:379–385CrossRefGoogle Scholar
  302. Karimova OV, Burns PC (2007) Structural units in three uranyl perrhenates. Inorg Chem 46(24):10108–10113CrossRefGoogle Scholar
  303. Karydis DA, Boghosian S, Nielsen K, Eriksen KM, Fehrmann R (2002) Crystal structure and spectroscopic properties of Na2K6(VO)2(SO4)7. Inorg Chem 41(9):2417–2421CrossRefGoogle Scholar
  304. Kassandrov EG, Mazurov MP (2009) Magmatogenic manganese ores of the South MinusaIntermontane Trough. Geol Ore Depos 51(5):356–370CrossRefGoogle Scholar
  305. Keramidas VG, Deangelis BA, White WB (1975) Vibrational spectra of spinels with cation ordering on the octahedral sites. J Solid State Chem 15(3):233–245CrossRefGoogle Scholar
  306. Kessler H, Olazcuaga R, Hatterer A, Hagenmuller P (1979) Etude des phases Na4XO4 (X = Sn, Pb) et de K4SnO4 par spectrophotométrie d’absorption infrarouge et diffusion Raman. Z anorg allg Chemie 458(1):195–201. (in French)CrossRefGoogle Scholar
  307. Ketani M, Abraham F, Mentré O (1999) Channel structure in the new BiCoPO5. Comparison with BiNiPO5. Crystal structure, lone pair localization and infrared characterization. Solid State Sci 1:449–460CrossRefGoogle Scholar
  308. Ketatni M, Abraham F, Mentre O (1999) Channel structure in the new BiCoPO5. Comparison with BiNiPO5. Crystal structure, lone pair localisation and infrared characterisation. Solid State Sci 1(6):449–460CrossRefGoogle Scholar
  309. Khanderi J, Shi L, Rothenberger A (2015) Hydrolysis of bis (dimethylamido) tin to tin(II) oxyhydroxide and its selective transformation into tin(II) or tin(IV) oxide. Inorg Chim Acta 427:27–32CrossRefGoogle Scholar
  310. Khaoulaf R, Ezzaafrani M, Ennaciri A, Harcharras M, Capitelli F (2012) Vibrational study of dipotassium zinc bis(dihydrogendiphosphate) dihydrate, K2Zn(H2P2O7)2∙2H2O. Phosphorus, sulfur, and silicon and the related elements 187(11):1367–1376.  https://doi.org/10.1080/10426507.2012.685669CrossRefGoogle Scholar
  311. Khomyakov AP, Kurova TA, Nechelyustov GN, Piloyan GO (1983) Barentsite, Na7AlH2(CO3)4F4, a new mineral. Zapiski RMO (Proc Russ Miner Soc) 112(4):474–479. (in Russian)Google Scholar
  312. Khomyakov AP, Nechelyustov GN, Rastsvetaeva RK, Rozenberg KA (2013) Davinciite, Na12K3Ca6Fe2+3Zr3(Si26O73OH)Cl2, a new K,Na-ordered mineral of the eudialyte group from the Khibiny Alkaline Pluton, Kola Peninsula, Russia. Geol Ore Depos 55(7):532–540CrossRefGoogle Scholar
  313. Khorari S, Rulmont A, Tarte P (1997) Alluaudite-like structure of the arsenate Na3In2(AsO4)3. J Solid State Chem 134(1):31–37CrossRefGoogle Scholar
  314. Khosravi I, Yazdanbakhsh M, Eftekhar M, Haddadi Z (2013) Fabrication of nanodelafossite LiCo0.5Fe0.5O2 as the new adsorbent in efficient removal of reactive blue 5 from aqueous solutions. Mater Res Bull 48(6):2213–2219CrossRefGoogle Scholar
  315. Kim K-W, Kim Y-H, Lee S-Y, Lee J-W, Joe K-S, Lee E-H, Kim J-S, Song K-C (2009) Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide. Environ Sci Technol 43(7):2355–2361CrossRefGoogle Scholar
  316. Kim S-H, Yeon J, Halasyamani PS (2009b) Noncentrosymmetric polar oxide material, Pb3SeO5: synthesis, characterization, electronic structure calculations, and structure–property relationships. Chem Mater 21(21):5335–5342CrossRefGoogle Scholar
  317. Kim MK, Kim SH, Chang HY, Halasyamani PS, Ok KM (2010a) New noncentrosymmetrictellurite phosphate material: synthesis, characterization, and calculations of Te2O(PO4)2. Inorg Chem 49(15):7028–7034CrossRefGoogle Scholar
  318. Kim SW, Chang HY, Halasyamani PS (2010b) Selective pure-phase synthesis of the multiferroic BaMF4 (M = Mg, Mn, Co, Ni, and Zn) family. J Am Chem Soc 132(50):17684–17685CrossRefGoogle Scholar
  319. Kim YH, Lee DW, Ok KM (2013) α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8: new quaternary mixed metal oxides composed of only second-order Jahn–Teller distortive cations. Inorg Chem 52(19):11450–11456CrossRefGoogle Scholar
  320. Kim YH, Lee DW, Ok KM (2014) Noncentrosymmetric YVSe2O8 and centrosymmetric YVTe2O8: macroscopic centricities influenced by the size of lone pair cation linkers. Inorg Chem 53(2):1250–1256CrossRefGoogle Scholar
  321. Klingenberg B, Vannice MA (1996) Influence of pretreatment on lanthanum nitrate, carbonate, and oxide powders. Chem Mater 8(12):2755–2768CrossRefGoogle Scholar
  322. Knittle E, Kaner RB, Jeanloz R, Cohen ML (1995) High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Phys Rev B 51(18):12149–12155CrossRefGoogle Scholar
  323. Knop O, Brisse F, Castelliz L (1969) Pyrochlores. V. Thermoanalytic, X-ray, neutron, infrared, and dielectric studies of A2Ti2O7 titanates. Can J Chem 47(6):971–990CrossRefGoogle Scholar
  324. Knyazev AV, Mączka M, Kuznetsova NY (2010) Thermodynamic modeling, structural and spectroscopic studies of the KNbWO6–KSbWO6–KTaWO6 system. Thermochim Acta 506(1):20–27CrossRefGoogle Scholar
  325. Knyrim JS, Schappacher FM, Pöttgen R, Schmedt auf der Guenne J, Johrendt D, Huppertz H (2007) Pressure-induced crystallization and characterization of the tin borate β-SnB4O7. Chem Mater 19(2):254–262CrossRefGoogle Scholar
  326. Koleva V, Effenberger H (2007) Crystal chemistry of M[PO2(OH)2]2∙2H2O compounds (M = Mg, Mn, Fe, Co, Ni, Zn, Cd): structural investigation of the Ni, Zn and Cd salts. J Solid State Chem 180(3):956–967CrossRefGoogle Scholar
  327. Koleva V, Stefov V, Najdoski M, Cahil A (2015) Thermal, spectral and microscopic studies of water-rich hydrate of the type Mg2KH(PO4)2∙15H2O. Thermal transformations. Thermochim Acta 619:20–25CrossRefGoogle Scholar
  328. Korinevsky VG (2015) Spessartine-andradite in scapolite pegmatite, Ilmenymountains, Russia. Can Mineral 53(4):623–632CrossRefGoogle Scholar
  329. Korinevsky VG, Kotlyarov VA, Korinevsky EV, Mironov AB, Shtenberg MV (2016) Magnesiohögbomite (Mg,Fe2+,Zn)8(Al,Ti,Fe3+)20O38(OH)2 from Ilmenogorsky-Vishnevogorsky complex. Mineral 2:20–33. (in Russian)Google Scholar
  330. Korthuis VC, Hoffmann RD, Huang J, Sleight AW (1993) Synthesis and crystal structure of potassium and sodium vanadium phosphates. Chem Mater 5(2):206–209CrossRefGoogle Scholar
  331. Kovacheva D, Petrov K (1998) Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange. Solid State Ionics 109(3):327–332CrossRefGoogle Scholar
  332. Kowalczyk LN, Condrate RA Sr (1974) Vibrational spectra of spodiosite analogs. J Am Ceram Soc 57(2):102–105CrossRefGoogle Scholar
  333. Krause W, Bernhardt H-J, Effenberger H, Kolitsch U, Lengauer C (2003) Redefinition of arhbarite, Cu2Mg(AsO4)(OH)3. Mineral Mag 67(5):1099–1107CrossRefGoogle Scholar
  334. Krishnakumar T, Pinna N, Kumari KP, Perumal K, Jayaprakash R (2008) Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater Lett 62(19):3437–3440CrossRefGoogle Scholar
  335. Kristiansen R (2016) Personal CommunGoogle Scholar
  336. Kruger A, Heyns AM (1997) A Raman and infrared study of (NH4)2ZrF6. Vib Spectrosc 14(2):171–181CrossRefGoogle Scholar
  337. Kurdakova SV, Grishchenko RO, Druzhinina AI, Ogorodova LP (2014) Thermodynamic properties of synthetic calcium-free carbonate cancrinite. Phys Chem Minerals 41(1):75–83CrossRefGoogle Scholar
  338. Kurzawa M, Blonska-Tabero A (2002) The synthesis and selected properties of new compounds: Mg3Fe4(VO4)6 and Zn3Fe4(VO4)6. Mater Res Bull 37(5):849–858CrossRefGoogle Scholar
  339. Kustova GN, Chesalov YA, Plyasova LM, Моlinа IY, Nizovskii AI (2011) Vibrational spectra of WO3nH2O and WO3 polymorphs. Vibr Spectrosc 55(2):235–240CrossRefGoogle Scholar
  340. Kutsay O, Yan C, Chong YM, Ye Q, Bello I, Zhang WJ, Zapien JA, Zhou ZF, Li YK, Garashchenko V, Gontar AG, Novikov NV, Lee ST (2010) Studying cubic boron nitride by Raman and infrared spectroscopies. Diamond Related Mater 19(7):968–971CrossRefGoogle Scholar
  341. Kyono A, Kimata M (2001) The crystal structure of synthetic TlAlSi3O8. Influence of the inert-pair effect of thallium on the feldspar structure. Eur J Mineral 13(5):849–856CrossRefGoogle Scholar
  342. Labajos FM, Rives V (1996) Thermal evolution of chromium (III) ions in hydrotalcite-like compounds. Inorg Chem 35(18):5313–5318CrossRefGoogle Scholar
  343. Lahti SI, Saikkonen R (1985) Bityite 2M1 from Eräjärvi compared with related Li-Be brittle micas. Bull Geol Soc Finland 57:207–215CrossRefGoogle Scholar
  344. Laihunite Research Group, Guiyang Institute of Geochemistry, Academia Sinica and Geological Team 101 (1976) Laihunite – a new iron silicate mineral. Geochim 2:95–103. (in Chinese, English Abstr)Google Scholar
  345. Lajzérowicz J (1966) Étude par diffraction des rayons X et absorption infra-rouge de la barysilite, MnPb8∙3Si2O7, et de composes isomorphes. Acta Crystallogr 20(3):357–363. (in French)CrossRefGoogle Scholar
  346. Latturner SE, Sachleben J, Iversen BB, Hanson J, Stucky GD (1999) Covalent guest-framework interactions in heavy metal sodalites: structure and properties of thallium and silver sodalite. J Phys Chem B 103(34):7135–7144CrossRefGoogle Scholar
  347. Lavat AE, Grasselli MC, Baran EJ (1989) The IR spectra of the (CrxFe1−x)VO4 phases. J Solid State Chem 78(2):206–208CrossRefGoogle Scholar
  348. Lavrova GV, Burgina EB, Matvienko AA, Ponomareva VG (2006) Bulk and surface properties of ionic salt CsH5(PO4)2. Solid State Ionics 177(13):1117–1122CrossRefGoogle Scholar
  349. Le Cléac’h A, Gillet P (1990) IR and Raman spectroscopic study of natural lawsonite. Eur J Mineral 2(1):43–53CrossRefGoogle Scholar
  350. Lee DW, Ok KM (2014) New polymorphs of ternary sodium tellurium oxides: hydrothermal synthesis, structure determination, and characterization of β-Na2Te4O9 and Na2Te2O6∙1.5H2O. Inorg Chem 53(19):10642–10648CrossRefGoogle Scholar
  351. Lee DW, Oh SJ, Halasyamani PS, Ok KM (2011) New quaternary tellurite and selenite: synthesis, structure, and characterization of centrosymmetric InVTe2O8 and noncentrosymmetric InVSe2O8. Inorg Chem 50(10):4473–4480CrossRefGoogle Scholar
  352. Lee DW, Bak DB, Kim SB, Kim J, Ok KM (2012) Effect of the framework flexibility on the centricities in centrosymmetric In2Zn(SeO3)4 and noncentrosymmetric Ga2Zn(TeO3)4. Inorg Chem 51(14):7844–7850CrossRefGoogle Scholar
  353. Lee EP, Song SY, Lee DW, Ok KM (2013) New bismuth selenium oxides: syntheses, structures, and characterizations of centrosymmetric Bi2(SeO3)2(SeO4) and Bi2(TeO3)2(SeO4) and noncentrosymmetric Bi(SeO3)(HSeO3). Inorg Chem 52(7):4097–4103CrossRefGoogle Scholar
  354. Lehnen T, Valldor M, Nižňanský D, Mathur S (2014) Hydrothermally grown porous FeVO4 nanorods and their integration as active material in gas-sensing devices. J Mater Chem A 2(6):1862–1868CrossRefGoogle Scholar
  355. Levin D, Soled SL, Ying JY (1996) Crystal structure of an ammonium nickel molybdate prepared by chemical precipitation. Inorg Chem 35(14):4191–4197CrossRefGoogle Scholar
  356. Li W, Chen G (1990) Lishizhenite – a new zinc sulphate mineral. Acta Mineral Sinica 10(4):299–305. (in Chinese, English abstr)Google Scholar
  357. Li G, Feng S, Li L, Li X, Jin W (1997) Mild hydrothermal syntheses and thermal behaviors of hydrogarnets Sr3Al2(OH)12 (M = Cr, Fe, and Al). Chem Mater 9(12):2894–2901CrossRefGoogle Scholar
  358. Li Z, Wu Y, Fu P, Pan S, Lin Z, Chen C (2003) Czochralski crystal growth and properties of Na5[B2P3O13]. J Cryst Growth 255(1):119–122CrossRefGoogle Scholar
  359. Li XZ, Wang C, Chen XL, Li H, Jia LS, Wu L, Du YX, Xu YP (2004a) Syntheses, thermal stability, and structure determination of the novel isostructural RBa3B9O18 (R = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb). Inorg Chem 43(26):8555–8560CrossRefGoogle Scholar
  360. Li YH, Ling YH, Bai XD (2004b) Preparation and characterization of anisotropic ammonium titanium phosphate crystals via hydrothermal route. Key Eng Mater 280:597–600Google Scholar
  361. Li Y, Chen G, Zhang H, Li Z, Sun J (2008) Electronic structure and photocatalytic properties of ABi2Ta2O9 (A = Ca, Sr, Ba). J Solid State Chem 181(10):2653–2659CrossRefGoogle Scholar
  362. Li H, Pan S, Wu H, Yang Z (2011a) Growth, structure and properties of the non-centrosymmetric hydrated borate (NH4)2CaB8O26H24. Mater Chem Phys 129(1):176–179CrossRefGoogle Scholar
  363. Li J, Pan S, Zhao W, Tian X, Han J, Fan X (2011b) Synthesis and crystal structure of a novel boratotungstate: Pb6B2WO12. Solid State Sci 13(5):966–969CrossRefGoogle Scholar
  364. Li H, Zhao Y, Pan S, Wu H, Yu H, Zhang F, Poeppelmeier KR (2013) Synthesis and Structure of KPbBP2O8 – a congruent melting borophosphate with nonlinear optical properties. Eur J Inorg Chem 2013(18):3185–3190CrossRefGoogle Scholar
  365. Liao S, Chen ZP, Tian XZ, Wu WW (2009) Synthesis and regulation of α-LiZnPO4∙H2O via a solid-state reaction at low-heating temperatures. Mater Res Bull 44(6):1428–1431CrossRefGoogle Scholar
  366. Liegeois-Duyckaerts M (1975) Vibrational studies of molybdates, tungstates and related compounds – IV. Hexagonal perovskites: Ba2BIITeO6 (BII = Ni, Co, Zn). Spectrochim Acta A 31(11):1585–1588CrossRefGoogle Scholar
  367. Liegeois-Duyckaerts M (1985) Spectroscopic and structural studies of the hexagonal perovskite Ba2CoTeO6. Spectrochim Acta A 41(4):523–529CrossRefGoogle Scholar
  368. Lin CH, Chen CS, Shiryaev AA, Zubavichus YV, Lii KH (2008) K3(U3O6)(Si2O7) and Rb3(U3O6)(Ge2O7): a pentavalent-uranium silicate and germanate. Inorg Chem 47(11):4445–4447CrossRefGoogle Scholar
  369. Lindsay JW, Robinson HN, Bramlet HL, Johnson AJ (1970) The thermal decomposition of neptunium (IV) oxalate. J Inorg Nucl Chem 32(5):1559–1567CrossRefGoogle Scholar
  370. Ling ZC, Xia HR, Ran DG, Liu FQ, Sun SQ, Fan JD, Zang HJ, Wang JY, Yu LL (2006) Lattice vibration spectra and thermal properties of SrWO4 single crystal. Chem Phys Lett 426(1):85–90CrossRefGoogle Scholar
  371. Liu H, Tang D (2009) Synthesis of ZnV2O6 powder and its cathodic performance for lithium secondary battery. Mater Chem Phys 114(2):656–659CrossRefGoogle Scholar
  372. Liu J, Wang Y, Lan G, Zheng J (2001) Vibrational spectra of barium formate crystal. J Raman Spectrosc 32(12):1000–1003CrossRefGoogle Scholar
  373. Liu L, Zhang F, Pan S, Lei C, Zhang F, Dong X, Wang Z, Yu H, Yang Z (2015b) Synthesis, crystal structure and properties of a new barium calcium borate, Ba2Ca2(B2O5)2. Solid State Sci 39:105–109CrossRefGoogle Scholar
  374. Liu Y, Mei D, Xu J, Wu Y (2015c) Hydrothermal synthesis, structures and optical properties of A2Zn3(SeO3)4XH2O (A = Li, Na, K; X = 2 or 0). J Solid State Chem 232:193–199CrossRefGoogle Scholar
  375. López MC, Ortiz GF, Arroyo-de Dompablo EM, Tirado JL (2014a) An unnoticed inorganic solid electrolyte: dilithium sodium phosphate with the nalipoite structure. Inorg Chem 53(4):2310–2316CrossRefGoogle Scholar
  376. Lucovsky G, Sladek RJ, Allen JW (1977) IR reflectance spectra of Ti2O3: infrared-active phonons and Ti 3d electronic effects. Phys Rev B 16(12):5452–5459CrossRefGoogle Scholar
  377. Lugo GJ, Mazón P, Baudin C, De Aza PN (2015) Nurse’s A-phase: synthesis and characterization in the binary system Ca2SiO4–Ca3(PO4)2. J Am Ceram Soc 98(10):3042–3046CrossRefGoogle Scholar
  378. Lutz HD, Pobitschka W, Frischemeier B, Becker RA (1978) Gitterschwingungsspektren. XIX – Infrarot-und Ramanspektren von BaBr2∙2H2O und BaBr2∙2D2O. J Raman Spectrosc 7(3):130–136. (in German)CrossRefGoogle Scholar
  379. Lutz HD, Wa G, Kliche G, Haeuseler H (1983) Lattice vibration spectra, XXXIII: far-infrared reflection spectra, TO and LO phonon frequencies, optical and dielectric constants, and effective charges of the spinel-type compounds MCr2S4 (M = Mn, Fe, Co, Zn, Cd, Hg), MCr2Se4 (M = Zn, Cd, Hg), and MIn2S4 (M = Mn, Fe, Co, Ni, Cd, Hg). J Solid State Chem 48(2):196–208CrossRefGoogle Scholar
  380. Lutz HD, Schmidt M, Weckler B (1993) Infrared and Raman studies on calcium, zinc and cadmium hydroxide halides Ca{O(H,D)}Cl, Cd{O(H, D)}Cl, Zn{O(H,D)}F and β-Zn{O(H,D)}Cl. J Raman Spectrosc 24(11):797–804CrossRefGoogle Scholar
  381. Lutz HD, Möller H, Schmidt M (1994) Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M= Ca, Mn, Co, Fe, Cd) – IR and Raman spectra, neutron diffraction of Fe(OH)2. J Molec Struct 328:121–132CrossRefGoogle Scholar
  382. Lutz HD, Beckenkamp K, Peter ST (1995) Laurionite-type M(OH)X (M = Ba, Pb; X = Cl, Br, I) and Sr(OH)I. An IR and Raman spectroscopic study. Spectrochim Acta A 51(5):755–767CrossRefGoogle Scholar
  383. Lyalina L, Zolotarev A Jr, Selivanova E, Savchenko Y, Krivovichev S, Mikhailova Y, Kadyrova G, Zozulya D (2016) Batievaite-(Y) Y2Ca2Ti[Si2O7]2(OH)2(H2O)4, a new mineral from nepheline syenite pegmatite in the Sakharjok massif, Kola Peninsula, Russia. Mineral Petrol 110(6):895–904CrossRefGoogle Scholar
  384. Ma J, Wu Q, Ding Y (2007) Assembly and deagglomeration of lanthanum orthoborate nanobundles. J Amer Ceram Soc 90(12):3890–3895Google Scholar
  385. Maczka M, Hanuza J, Lutz ETG, Van der Maas JH (1999) Infrared activity of KAl(MoO4)2 and NaAl(MoO4)2. J Solid State Chem 145(2):751–756CrossRefGoogle Scholar
  386. Mączka M, Hanuza J, Fuentes AF, Amador U (2002) Vibrational characteristics of new double tungstates Li2MII(WO4)2 (M = Co, Ni and Cu). J Raman Spectrosc 33(1):56–61CrossRefGoogle Scholar
  387. Mączka M, Pietraszko A, Hanuza J, Majchrowski A (2010) Raman and IR spectra of noncentrosymmetric Bi0.21La0.91Sc2.88(BO3)4 single crystal with the huntite-type structure. J Raman Spectrosc 41(10):1297–1301CrossRefGoogle Scholar
  388. Mączka M, Ptak M, Kurnatowska M, Hanuza J (2013) Synthesis, phonon and optical properties of nanosized CoCr2O4. Mater Chem Phys 138(2):682–688CrossRefGoogle Scholar
  389. Mączka M, Szymborska-Małek K, Gągor A, Majchrowski A (2015) Growth and characterization of acentric BaHf(BO3)2 and BaZr(BO3)2. J Solid State Chem 225:330–334CrossRefGoogle Scholar
  390. Madon M, Price GD (1989) Infrared spectroscopy of the polymorphic series (enstatite, ilmenite, and perovskite) of MgSiO3, MgGeO3, and MnGeO3. J Geophys Res Solid Earth 94(B11):15687–15701CrossRefGoogle Scholar
  391. Majzlan J, Michallik R (2007) The crystal structures, solid solutions and infrared spectra of copiapite-group minerals. Miner Mag 71(5):553–569CrossRefGoogle Scholar
  392. Makreski P, Stefov S, Pejov L, Jovanovski G (2015b) Theoretical and experimental study of the vibrational spectra of (para)symplesite and hörnesite. Spectrochim Acta A 144:155–162CrossRefGoogle Scholar
  393. Malakho AP, Morozov VA, Pokholok KV, Lazoryak BI, Van Tendeloo G (2005) Layered ordering of vacancies of lead iron phosphate Pb3Fe2(PO4)4. Solid State Sci 7(4):397–404CrossRefGoogle Scholar
  394. Manca SG, Baran EJ (1981) Characterization of the monoclinic form of praseodymium chromate (V). J Phys Chem Solids 42(10):923–925CrossRefGoogle Scholar
  395. Mancilla N, D’Antonio MC, González-Baró AC, Baran EJ (2009b) Vibrational spectra of lead (II) oxalate. J Raman Spectrosc 40(12):2050–2052CrossRefGoogle Scholar
  396. Manonmoni JV, Bhagavannarayana G, Ramasamy G, Meenakshisundaram S, Amutha M (2014) Growth, structure and spectral studies of a novel mixed crystal potassium zinc manganese sulphate. Spectrochim Acta A 117:9–12CrossRefGoogle Scholar
  397. Mariappan CR, Govindaraj G, Ramya L, Hariharan S (2005) Synthesis, characterization and electrical conductivity studies on A3Bi2P3O12 (A = Na, K) materials. Mater Res Bull 40(4):610–618CrossRefGoogle Scholar
  398. Marinova D, Kostov V, Nikolova R, Kukeva R, Zhecheva E, Sendova-Vasileva M, Stoyanova R (2015) Fromkröhnkite – to alluaudite-type of structure: novel method of synthesis of sodium manganese sulfates with electrochemical properties in alkali-metal ion batteries. J Mater Chem A 3(44):22287–22299CrossRefGoogle Scholar
  399. Marshukova NK, Pavlovskii AB, Sidorenko GA (1984) Mushistonite, (Cu,Zn,Fe)Sn(OH)6, a new tin mineral. Zapiski RMO (Proc Russ Miner Soc) 113(5):612–617. (in Russian)Google Scholar
  400. Martin SW, Bloyer DR (1991) Preparation and infrared characterization of thioborate compounds and polycrystals. J Am Ceram Soc 74(5):1003–1010CrossRefGoogle Scholar
  401. Mary SS, Kirupavathy SS, Mythili P, Srinivasan P, Kanagasekaran T, Gopalakrishnan R (2008) Studies on the growth, optical, electrical and spectral properties of potassium pentaborate (KB5) single crystals. Spectrochim Acta A 71(1):10–16CrossRefGoogle Scholar
  402. Masingboon C, Thongbai P, Maensiri S, Yamwong T, Seraphin S (2008) Synthesis and giant dielectric behavior of CaCu3Ti4O12 ceramics prepared by polymerized complex method. Mater Chem Phys 109(2):262–270CrossRefGoogle Scholar
  403. Masingboon C, Thongbai P, Maensiri S, Yamwong T (2009) Nanocrystalline CaCu3Ti4O12 powder by PVA sol-gel route: synthesis, characterization and its giant dielectric constant. Appl Phys A 96(3):595–602CrossRefGoogle Scholar
  404. Massaferro A, Kremer E, Wagner CC, Baran EJ (1999) Vibrational spectra of Pb4(PO4)2SO4. J Raman Spectrosc 30(3):225–226CrossRefGoogle Scholar
  405. Mattes R, Müller G, Becher HJ (1972) Schwingungsspektren und Struktur von Dioxotrifluoromolybdaten und -wolframaten. Z anorg allg Chemie 389(2):177–187. (in German)CrossRefGoogle Scholar
  406. McPherson GL, Chang JR (1973) Infrared and structural studies of MIM'IIX3 type transition metal halides. Inorg Chem 12(5):1196–1198CrossRefGoogle Scholar
  407. Melghit K, Al-Mungi AS (2007) New form of iron orthovanadate FeVO4∙1.5H2O prepared at normal pressure and low temperature. Mater Sci Eng B 136(2):177–181CrossRefGoogle Scholar
  408. Melghit K, Al-Belushi AK, Al-Amri I (2007) Short reaction time preparation of zinc pyrovanadate at normal pressure. Ceram Int 33(2):285–288CrossRefGoogle Scholar
  409. Menezes WG, Reis DM, Benedetti TM, Oliveira MM, Soares JF, Torresi RM, Zarbin AJ (2009) V2O5 nanoparticles obtained from a synthetic bariandite-like vanadium oxide: synthesis, characterization and electrochemical behavior in an ionic liquid. J Colloid Interface Scie 337(2):586–593CrossRefGoogle Scholar
  410. Meng L, Burris S, Bui H, Pan WP (2005) Development of an analytical method for distinguishing ammonium bicarbonate from the products of an aqueous ammonia CO2 scrubber. Anal Chem 77(18):5947–5952CrossRefGoogle Scholar
  411. Mer A, Obbade S, Rivenet M, Renard C, Abraham F (2012) [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology. J Solid State Chem 185:180–186CrossRefGoogle Scholar
  412. Mikuli E, Hetmańczyk Ł, Medycki W, Kowalska A (2007) Phase transitions and molecular motions in [Zn(NH3)4](BF4)2 studied by nuclear magnetic resonance, infrared and Raman spectroscopy. J Phys Chem Solids 68(1):96–103CrossRefGoogle Scholar
  413. Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions, their use in qualitative analysis. Analyt Chem 24(8):1253–1294CrossRefGoogle Scholar
  414. Mills SJ, Sejkora J, Kampf AR, Grey IE, Bastow TJ, Ball NA, Adams PM, Raudsepp M, Cooper MA (2012b) Krásnoite, the fluorophosphate analogue of perhamite, from the Huber open pit, Czech Republic and the Silver Coin mine, Nevada, USA. Miner Mag 76(3):625–634CrossRefGoogle Scholar
  415. Mirgorodsky AP, Baraton MI, Quintard P (1989) Lattice dynamics of silicon oxynitride, Si2N2O: vibrational spectrum, elastic and piezoelectric properties. J Phys Condens Matter 1(50):10053–10066CrossRefGoogle Scholar
  416. Moenke H (1962) Mineralspektren I. Akademie Verlag, Berlin. (in German)Google Scholar
  417. Moore RK, White WB (1970) Study of order-disorder in rock-salt-related structures by infrared spectroscopy. J Amer Ceram Soc 53(12):679–682CrossRefGoogle Scholar
  418. Morris RE, Harrison WT, Stucky GD, Cheetham AK (1991) The syntheses and crystal structures of two novel aluminum selenites, Al2(SeO3)3∙6H2O and AlH(SeO3)2∙2H2O. J Solid State Chem 94(2):227–235CrossRefGoogle Scholar
  419. Muller O, White WB, Roy R (1969a) Infrared spectra of the chromates of magnesium, nickel and cadmium. Spectrochim Acta A 25(8):1491–1499CrossRefGoogle Scholar
  420. Muller O, White WB, Roy R (1969b) X-ray diffraction study of the chromates of nickel, magnesium and cadmium. Z Krist 130:112–120CrossRefGoogle Scholar
  421. Murshed MM, Mendive CB, Curti M, Šehović M, Friedrich A, Fischer M, Gesing TM (2015) Thermal expansion of mullite-type Bi2Al4O9: a study by X-ray diffraction, vibrational spectroscopy and density functional theory. J Solid State Chem 229:87–96CrossRefGoogle Scholar
  422. Murthy TSN, Srinivas V, Saibabu G, Salagram M (1992) Structural distortions in CrO42− ion in 3CdSO4∙8H2O crystals from IR studies. J Solid State Chem 97(2):358–365CrossRefGoogle Scholar
  423. Musić S, Dragčević Đ, Maljković M, Popović S (2003) Influence of chemical synthesis on the crystallization and properties of zinc oxide. Mater Chem Phys 77(2):521–530CrossRefGoogle Scholar
  424. Mutschke H, Min M, Tamanai A (2013) Laboratory-based grain-shape models for simulating dust infrared spectra. Astron Astrophys manuscr No. 12267, 8 ppGoogle Scholar
  425. Nabar MA, Mhatre BG (2001) Studies on triple orthovanadates: VIII. Synthesis and spectrostructural characterization of triple orthovanadates BaLnTh(VO4)3 (Ln = La or Pr) and BaLnCe(VO4)3 (Ln = La, Pr, Nd or Sm). J Alloys Compd 323:83–85CrossRefGoogle Scholar
  426. Nabar MA, Sakhardande RR (1985) Synthesis and crystal chemistry of triple orthoarsenates, CaLnTh(AsO4)3. J Crystallographic Spectroscopic Res 15(3):263–269CrossRefGoogle Scholar
  427. Naddari T, El Feki H, Savariault JM, Salles P, Salah AB (2003) Structure and ionic conductivity of the lacunary apatite Pb6Ca2Na2(PO4)6. Solid State Ionics 158(1):157–166CrossRefGoogle Scholar
  428. Naı̈li H, Mhiri T, Jaud J (2001) Crystal structure and characterization of CsH5(AsO4)2: a new cesium pentahydrogen arsenate, and comparison with CsH5(PO4)2 and RbH5(AsO4)2. J Solid State Chem 161(1):9–16CrossRefGoogle Scholar
  429. Narasimham KV, Girija M (1967) Absorption spectrum of potassium uranyl sulphate. Defence Sci J 17(2):95–106Google Scholar
  430. Narasimhulu KV, Sunandana CS, LakshmanaRao J (2000) Spectroscopic studies of Cu2+ ions doped in KZnClSO4∙3H2O crystals. Phys Status Solidi B 217(2):991–997CrossRefGoogle Scholar
  431. Nasdala L, Witzke T, Ullrich B, Brett R (1998) Gordaite NaZn4(SO4)(OH)6Cl∙6H2O: second occurrence in the Juan de Fuca Ridge, and new data. Am Mineral 83(9–10):1111–1116CrossRefGoogle Scholar
  432. Nassau K, Cooper AS, Shiever JW, Prescott BE (1973) Transition metal iodates. III. Gel growth and characterization of six cupric iodates. J Solid State Chem 8(3):260–273CrossRefGoogle Scholar
  433. Nayak M, Kutty TRN (1998) Luminescence of Fe3+ doped NaAlSiO4 prepared by gel to crystallite conversion. Mater Chem Phys 57(2):138–146CrossRefGoogle Scholar
  434. Nefedov EI, Griffin WL, Kristiansen R (1977) Minerals of the schoenfliesite – wickmanite series from Pitkäranta, Karelia, U.S.S.R. Can Mineral 15:437–445Google Scholar
  435. Nguyen SD, Halasyamani PS (2012) Synthesis, structure, and characterization of new Li+–d0–lone-pair–oxides: noncentrosymmetric polar Li6(Mo2O5)3(SeO3)6 and centrosymmetric Li2(MO3)(TeO3)(M = Mo6+ or W6+). Inorg Chem 51(17):9529–9538CrossRefGoogle Scholar
  436. Nguyen N, Choisnet J, Raveau B (1980) Silicates synthétiques à structure milarite. J Solid State Chem 34:1–9CrossRefGoogle Scholar
  437. Ni S, Wang X, Zhou G, Yang F, Wang J, He D (2010a) Hydrothermal synthesis and magnetic property of Cu3(OH)2V2O7nH2O. Mater Lett 64(4):516–519CrossRefGoogle Scholar
  438. Ni S, Wang X, Zhou G, Yang F, Wang J, He D (2010b) Crystallized Zn3(VO4)2: synthesis, characterization and optical property. J Alloys Compd 491(1):378–381CrossRefGoogle Scholar
  439. Obbade S, Dion C, Saad M, Yagoubi S, Abraham F (2004) Pb(UO2)(V2O7), a novel lead uranyl divanadate. J Solid State Chem 177(11):3909–3917CrossRefGoogle Scholar
  440. Ohnishi M, Kobayashi S, Kusachi I (2002) Ktenasite from the Hirao mine at Minoo, Osaka, Japan. J Mineral Petrol Sci 97(4):185–189CrossRefGoogle Scholar
  441. Ohwada K (1972) Far-infrared spectrum of uranyl fluoride. J Inorg Nucl Chem 34(7):2357–2358CrossRefGoogle Scholar
  442. Ohwada K, Soga T, Iwasaki M (1972) The infrared spectrum of tripotassium uranyl fluoride. Spectrochim Acta A 28(5):933–938CrossRefGoogle Scholar
  443. Olds TA, Plášil J, Kampf AR, Škoda R, Burns PC, Čejka J, Bourgoin V, Boulliard J-C (2016a) Gauthierite, KPb[(UO2)7O5(OH)7]·8H2O, a new uranyl-oxide hydroxy-hydrate mineral from Shinkolobwe with a novel uranyl-anion sheet-topology. Eur J Mineral.  https://doi.org/10.1127/ejm/2017/0029-2586CrossRefGoogle Scholar
  444. Olds TA, Sadergaski LR, Plášil J, Kampf AR, Burns PC, Steele IM, Marty J, Carlson S, Mills OP (2016b) Leószilárdite, the first Na,Mg-containing uranyl carbonate from the Markey Mine, San Juan County, Utah, USA. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.149CrossRefGoogle Scholar
  445. Ondruš P, Veselovský F, Skála R, Sejkora J, Pažout R, Frýda J, Gabašová A, Vajdak J (2006) Lemanskiite, NaCaCu5(AsO4)4Cl∙5H2O, a new mineral species from the Abundancia mine, Chile. Can Mineral 44:523–531CrossRefGoogle Scholar
  446. Ono A (1985) Phase relations in the system NH4Zr2(PO4)3 – (NH4)3M2(PO4)3: M = Y, Al or In. J Mater Sci Lett 4(8):936–939CrossRefGoogle Scholar
  447. Ono H, Hosokawa Y, Shinoda K, Koyanagi K, Yamaguchi H (2001) Ta–O phonon peaks in tantalum oxide films on Si. Thin Solid Films 381(1):57–61CrossRefGoogle Scholar
  448. Onodera A, Liu X, Kyokane D, Kura K, Machida K, Adachi GY, Su W (1999) Pressure-induced amorphization of SrB2O4. J Phys Chem Solids 60(10):1737–1743CrossRefGoogle Scholar
  449. Osaka A, Takahashi K, Ikeda M (1984) Infrared study of trivalent cations B and Fe in amorphous and crystalline phosphates. J Mater Sci Lett 3(1):36–38CrossRefGoogle Scholar
  450. Ouerfelli N, Guesmi A, Molinié P, Mazza D, Zid MF, Driss A (2007) The iron potassium diarsenate KFe(As2O7) structural, electric and magnetic behaviors. J Solid State Chem 180(10):2942–2949CrossRefGoogle Scholar
  451. Ouerfelli N, Smida YB, Zid MF (2015) Synthesis, crystal structure and electrical properties of a new iron arsenate Na2.77K1.52Fe2.57(AsO4)4. J Alloys Compd 651:616–622CrossRefGoogle Scholar
  452. Pachoud E, Zhang W, Tapp J, Liang KC, Lorenz B, Chu PC, Halasyamani PS (2013) Top-seeded single-crystal growth, structure, and physical properties of polar LiCrP2O7. Cryst Growth Design 13(12):5473–5480CrossRefGoogle Scholar
  453. Palvadeau P, Euzen P, Queignec M, Venien JP (1991) Characterization of Mn7SiO12, a synthetic equivalent of “braunite” a natural mineral with various manganese sites. Mater Res Bull 26(9):841–848CrossRefGoogle Scholar
  454. Pan S, Smit JP, Marvel MR, Stern CL, Watkins B, Poeppelmeier KR (2006) Synthesis, structure and properties of Pb2CuB2O6. Mater Res Bull 41(5):916–924CrossRefGoogle Scholar
  455. Paques-Ledent MT (1978) Vibrational spectra and structure of LiB2+PO4 compounds with B = Sr, Ba, Pb. J Solid State Chem 23(1):147–154CrossRefGoogle Scholar
  456. Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds – II orthophosphates, -arsenates and -vanadates AIBIIXVO4. Spectrochim Acta A 30(3):673–689CrossRefGoogle Scholar
  457. Parajón-Costa BS, Mercader RC, Baran EJ (2013) Spectroscopic characterization of mixed cation diphosphates of the type MIFeIIIP2O7 (with MI = Li, Na, K, Rb, Cs, Ag). J Phys Chem Solids 74(2):354–359CrossRefGoogle Scholar
  458. Payen J-L, Durand J, Cot L, Galigne J-L (1979) Etude structurale du monofluorophosphate de potassium K2PO3F. Can J Chem 57(8):886–889. (in French).  https://doi.org/10.1139/v79-146CrossRefGoogle Scholar
  459. Pažout R, Sejkora J, Maixner J, Dušek M, Tvrdý J (2015) Refikite from Krásno, Czech Republic: a crystal-and molecular-structure study. Mineral Mag 79(1):59–70CrossRefGoogle Scholar
  460. Pedregosa JC, Baran EJ, Aymonino PJ (1974) Kristallchemisches Verhalten und IR-Spektren einiger Divanadate des Thortveitit-Typs und verwandter Strukturen. Z anorg allg Chemie 404(3):308–320. (in German)CrossRefGoogle Scholar
  461. Pedro M, Trombe JC, Castro A (1995) On the rare-earth selenites Pr2Se4O11, R2Se3O9 and R2SeO5. J Mater Sci Lett 14(14):994–997CrossRefGoogle Scholar
  462. Peng GW, Chen SK, Liu HS (1995) Infrared absorption spectra and their correlation with the Ti-O bond length variations for TiO2 (rutile), Na-titanates, and Na-titanosilicate (natisite, Na2TiOSiO4). Appl Spectrosc 49(11):1646–1651CrossRefGoogle Scholar
  463. Petit S, Decarreau A, Gates W, Andrieux P, Grauby O (2015) Hydrothermal synthesis of dioctahedral smectites: the Al–Fe3+ chemical series. Part II: Crystal-chemistry. App Clay Sci 104:96–105CrossRefGoogle Scholar
  464. Peytavin S, Brun G, Cot L, Maurin M (1972a) Etude vibrationnelle des sulfates et séléniates doubles dihydratés de sodium et de métal divalent: Na2MII(SO4)2∙2H2O (MII = Cr, Cd, Mn, Cu) Na2MII(SeO4)2∙2H2O (MII = Cd, Mn). Spectrochim Acta A 28(10):1995–2003. (in French)CrossRefGoogle Scholar
  465. Peytavin S, Brun G, Guillermet J, Cot L, Maurin M (1972b) Spectres de vibration des sulfates doubles de sodium et d'un métal divalent Na2MII(SO4)2∙4H2O (MII = Mg, Fe, Co, Ni, Zn). Spectrochim Acta A 28(10):2005–2011. (in French)CrossRefGoogle Scholar
  466. Pieczka A, Hawthorne FC, Cooper MA, Szełęg E, Szuszkiewicz A, Turniak K, Nejbert K, Ilnicki S (2015) Pilawite-(Y), Ca2(Y,Yb)2[Al4(SiO4)4O2(OH)2], a new mineral from the Piława Górna granitic pegmatite, southwestern Poland: mineralogical data, crystal structure and association. Mineral Mag 79(5):1143–1157CrossRefGoogle Scholar
  467. Pignatelli I, Mugnaioli E, Mosser-Ruck R, Barres O, Kolb U, Michau N (2014) A multi-technique, micrometer- to atomic-scale description of a synthetic analogue of chukanovite, Fe2(CO3)(OH)2. Eur J Mineral 26:221–229CrossRefGoogle Scholar
  468. Pikl R, De Waal D, Aatiq A, El Jazouli A (1998) Vibrational spectra and factor group analysis of Li2xMn0.5−xTi2(PO4) {x = 0, 0.25, 0.50}. Mater Res Bull 33(6):955–961CrossRefGoogle Scholar
  469. Pirayesh H, Nychka JA (2013) Sol-gel synthesis of bioactive glass-ceramic 45S5 and its in vitro dissolution and mineralization behavior. J Am Ceram Soc 96(5):1643–1650CrossRefGoogle Scholar
  470. Piro OE, Echeverría GA, González-Baró AC, Baran EJ (2016) Crystal and molecular structure and spectroscopic behavior of isotypic synthetic analogs of the oxalate minerals stepanovite and zhemchuzhnikovite. Phys Chem Minerals 43(4):287–300CrossRefGoogle Scholar
  471. Pookmanee P, Kojinok S, Puntharod R, Sangsrichan S, Phanichphant S (2013) Preparation and characterization of BiVO4 powder by the sol-gel method. Ferroelectrics 456(1):45–54CrossRefGoogle Scholar
  472. Porta P, Minelli G, Botto IL, Baran EJ (1991) Structural, magnetic, and optical investigation of Ni6MnO8. J Solid State Chem 92(1):202–207CrossRefGoogle Scholar
  473. Porter Y, Halasyamani PS (2003) Syntheses, structures, and characterization of new lead (II)-tellurium (IV)-oxide halides: Pb3Te2O6X2 and Pb3TeO4X2 (X = Cl or Br). Inorg Chem 42(1):205–209CrossRefGoogle Scholar
  474. Porter Y, Bhuvanesh NSP, Halasyamani PS (2001) Synthesis and characterization of non-centrosymmetric TeSeO4. Inorg Chem 40(6):1172–1175CrossRefGoogle Scholar
  475. Poudret L, Prior TJ, McIntyre LJ, Fogg AM (2008) Synthesis and crystal structures of new lanthanide hydroxyhalide anion exchange materials, Ln2(OH)5X∙1.5H2O (X = Cl, Br; Ln = Y, Dy, Er, Yb). Chem Mater 20(24):7447–7453CrossRefGoogle Scholar
  476. Poupon M, Barrier N, Petit S, Clevers S, Dupray V (2015) Hydrothermal synthesis and dehydration of CaTeO3(H2O): an original route to generate new CaTeO3 polymorphs. Inorg Chem 54(12):5660–5670CrossRefGoogle Scholar
  477. Povarennykh AS (1970) Spectres infrarouges de certains minéraux de Madagascar. Bull Soc Fr Minéral Cristallogr 93:224–234. (in French)CrossRefGoogle Scholar
  478. Powers DA, Rossman GR, Schugar HJ, Gray HB (1975) Magnetic behavior and infrared spectra of jarosite, basic iron sulfate, and their chromate analogs. J Solid State Chem 13(1–2):1–13CrossRefGoogle Scholar
  479. Prodjosantoso AK, Laksono EW, Utomo MP (2015) Sintesis dan karaterisasi SnO2 sebagai upaya pengembangan produk hilir timah putih untuk meningkatkan devisa nasional. J Penelitian Saintek 16(2):99–110. (in Indonesian)Google Scholar
  480. Psycharis V, Kapoutsis IA, Chryssikos GD (1999) Crystal structure and vibrational spectra of Li2BAlO4. J Solid State Chem 142(1):214–219CrossRefGoogle Scholar
  481. Ptak M, Mączka M, Pikul A, Tomaszewski PE, Hanuza J (2014) Magnetic and low temperature phonon studies of CoCr2O4 powders doped with Fe(III) and Ni(II) ions. J Solid State Chem 212:218–226CrossRefGoogle Scholar
  482. Pucka G, Dobosz SM, Paluszkiewicz CZ (2000) Mechanizm wiązania mas fosforanowych w świetle badań spektroskopowych w podczerwieni. Krzepnięcie Metalii Stopów 2(44):521–526. (in Polish)Google Scholar
  483. Raade G, Mladeck MH, Kristiansen R, Din VK (1984) Kaatialaite, a new ferric arsenate mineral from Finland. Amer Mineral 69:383–387Google Scholar
  484. Raade G, Grice JD, Erambert M, Kristiansson P, Witzke T (2008) Proshchenkoite-(Y) from Russia – a new mineral species in the vicanite group: descriptive data and crystal structure. Mineral Mag 72:1071–1082CrossRefGoogle Scholar
  485. Raade G, Grice JD, Rowe R (2016) Ferrivauxite, a new phosphate mineral from Llallagua, Bolivia. Mineral Mag 80(2):311–324CrossRefGoogle Scholar
  486. Raj AME, Jayanthi DD, Jothy VB (2008) Optimized growth and characterization of cadmium oxalate single crystals in silica gel. Solid State Sci 10(5):557–562CrossRefGoogle Scholar
  487. Ramaraghavulu R, Sivaiah K, Buddhudu S (2012) Structural and dielectric properties of LiV3O8 ceramic powders. Ferroelectrics 432(1):55–64CrossRefGoogle Scholar
  488. Rangan KK, Prasad BR, Subramanian CK, Gopalakrishnan J (1993) Coupled substitution of niobium and silicon in KTiOPO4 and KTiOAsO4. Synthesis and nonlinear optical properties of KTi1–xNbxOX1–xSixO4 (X = P, As). Inorg Chem 32(20):4291–4293CrossRefGoogle Scholar
  489. Rao KS, Buddhudu S (2010) Structural, thermal and dielectric properties of BiNbO4 ceramic powder. Ferroelectrics Lett 37(6):101–109CrossRefGoogle Scholar
  490. Rao C, Hatert F, Wang RC, Gu XP, Dal Bo F, Dong CW (2015) Minjiangite, BaBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, southeastern China. Mineral Mag 79(5):1195–1202CrossRefGoogle Scholar
  491. Ratheesh R, Suresh G, Nayar VU, Morris RE (1997) Vibrational spectra of three aluminium selenities Al2(SeO3)3∙3H2O, Al2(SeO3)3∙6H2O and AlH(SeO3)2∙H2O. Spectrochim Acta A 53(12):1975–1979CrossRefGoogle Scholar
  492. Ratnam BV, Jayasimhadri M, Jang K (2014) Luminescent properties of orange emissive Sm3+–activated thermally stable phosphate phosphor for optical devices. Spectrochim Acta A 132:563–567CrossRefGoogle Scholar
  493. Ravi V, Adyanthaya S, Aslam M, Pethkar S, Choube VD (1999) Synthesis of bismuth tin pyrochlore. Mater Lett 40(1):11–13CrossRefGoogle Scholar
  494. Ravikumar RVSSN, Chandrasekhar AV, Reddy BJ, Reddy YP, Ikeda K (2002) X-Ray powder diffraction, DTA and vibrational studies of CdNH4PO4∙6H2O crystals. Crystal Res Technol 37(10):1127–1132CrossRefGoogle Scholar
  495. Reddy KM, Moorthy LR, Reddy BJ (1987) Electronic and vibrational absorption spectra in falcondoite. Solid State Commun 64(7):1085–1088CrossRefGoogle Scholar
  496. Ren Y, Ximen L, Peng Z (1983) Daqingshanite – a new mineral recently discovered in China. Geochem 2:180–184Google Scholar
  497. Repelin Y, Husson E, Brusset H (1979a) Etude par spectroscopies d’absorptioni.r. et de diffusion Raman des composés AIIBV2O6 de structure de type “blocs 1×2” – I. Etude du niobate de Baryum BaNb2O6. Spectrochim Acta A 35:937–948. (in French)CrossRefGoogle Scholar
  498. Reshak AH, Chen X, Auluck S, Kamarudin H (2012a) Structural, electronic properties and charge density distribution of the LiNaB4O7: theory and experiment. Mater Chem Phys 137(1):346–352CrossRefGoogle Scholar
  499. Reshak AH, Chen X, Auluck S, Kamarudin H (2012b) Single-crystal oxoborate (Pb3O)2(BO3)2WO4: growth and characterization. Mater Res Bull 47:2552–2560CrossRefGoogle Scholar
  500. Rieger F, Mudring A-V (2007) Phase transition in Tl2TeO3: influence and origin of the thallium lone pair distortion. Inorg Chem 46(2):446–452CrossRefGoogle Scholar
  501. Rigotti G, Punte G, Rivero BE, Escobar ME, Baran EJ (1981) Crystal data and vibrational spectra of the rare earth decavanadates. J Inorg Nucl Chem 43(11):2811–2814CrossRefGoogle Scholar
  502. Rigotti G, Lavat AE, Escobar ME, Baran EJ (1983) KristallographischeDaten, IR-Spektrum und thermisches Verhalten von Aluminium-Dekavanadat. Z anorg allg Chemie 501(6):184–190. (in German)CrossRefGoogle Scholar
  503. Riquelme F, Ruvalcaba-Sil JL, Alvarado-Ortega J, Estrada-Ruiz E, Galicia-Chávez M, Porras-Múzquiz H, Stojanoff V, Siddons DP, Miller L (2014) Amber from México: coahuilite, simojovelite and bacalite. In: MRS Proceedings, vol 1618. Cambridge University Press, pp 169–180.  https://doi.org/10.1557/opl.2014.466CrossRefGoogle Scholar
  504. Ristić M, Popović S, Musić S (2005) Application of sol–gel method in the synthesis of gallium (III)-oxide. Mater Lett 59(10):1227–1233CrossRefGoogle Scholar
  505. Rius J, Allmann R (1984) The superstructure of the double layer mineral wermlandite [Mg7(Al0.57Fe3+0.43)(OH)18]2+·[(Ca0.6,Mg0.4)(SO4)2(H2O)12]2−. Z Kristallogr 168:133–144CrossRefGoogle Scholar
  506. Rocchiccioli-Deltcheff C (1973) Comparaison des spectres d'absorption infrarouge de niobates et tantalates de mètaux monovalents. Spectrochim Acta A 29(1):93–106. (in French)CrossRefGoogle Scholar
  507. Rocha AL, Baran EJ (1988) Spektroskopisches und thermisches Verhalten vom VOSeO3∙3H2O und VOSeO3. Z anorg allg Chemie 564(1):141–147. (in German)CrossRefGoogle Scholar
  508. Rodríguez-Clemente R, Serna CJ, Ocaña M, Matijević E (1994) The relationship of particle morphology and structure of basic copper (II) compounds obtained by homogeneous precipitation. J Cryst Growth 143(3):277–286CrossRefGoogle Scholar
  509. Romero M, Gómez RW, Marquina V, Pérez-Mazariego JL, Escamilla R (2014) Synthesis by molten salt method of the AFeO3 system (A = La, Gd) and its structural, vibrational and internal hyperfine magnetic field characterization. Phys B 443Google Scholar
  510. Roy BN (1987) Spectroscopic analysis of the structure of silicate glasses along the joint xMAlO2–(1–x)SiO2 (M = Li, Na, K, Rb, Cs). J Amer Ceram Soc 70(3):183–192CrossRefGoogle Scholar
  511. RRUFF (2007) Infrared spectrum for heklaite. http://rruff.info/heklaite/display=default/. Accessed 5 Apr 2007
  512. Rulmont A, Tarte P (1987) Infrared spectrum of crystalline and glassy borosilicates MIBSi2O6. J Mater Sci Lett 6(1):38–40CrossRefGoogle Scholar
  513. Rulmont A, Tarte P, Winand JM (1987) Vibrational spectrum of crystalline and glassy LiBGeO4: structural analogies with BAsO4. J Mater Sci Lett 6(6):659–662CrossRefGoogle Scholar
  514. Rulmont A, Tarte P, Choisnet J (1992) Vibrational spectra of tellurates with the garnet structure. Spectrochim Acta A 48(7):921–930CrossRefGoogle Scholar
  515. Runčevski T, Wu C, Yu H, Yang B, Dinnebier RE (2013) Structural characterization of a new magnesium oxysulfate hydrate cement phase and its surface reactions with atmospheric carbon dioxide. J Am Ceram Soc 96(11):3609–3616CrossRefGoogle Scholar
  516. Russell JD, Milodowski AE, Fraser AR, Clark DR (1983) New IR and XRD data for leadhillite of ideal composition. Mineral Mag 47:371–375CrossRefGoogle Scholar
  517. Saad S, Obbade S, Yagoubi S, Renard C, Abraham F (2008) A new uranyl niobate sheet in the cesium uranyl niobate Cs9[(UO2)8O4(NbO5)(Nb2O8)2]. J Solid State Chem 181(4):741–750CrossRefGoogle Scholar
  518. Sahoo PP, Sumithra S, Madras G, Row TG (2009) Synthesis, structure and photocatalytic properties of β-ZrMo2O8. Bull Mater Sci 32(3):337–342CrossRefGoogle Scholar
  519. Salentine CG (1987) Synthesis, characterization, and crystal structure of a new potassium borate, KB3O5∙3H2O. Inorg Chem 26(1):128–132CrossRefGoogle Scholar
  520. Salvadó MA, Pertierra P, Bortun AI, Trobajo C, García JR (2005) New hydrothermal synthesis and structure of Th2(PO4)2(HPO4)∙H2O: the first structurally characterized thorium hydrogen phosphate. Inorg Chem 44(10):3512–3517CrossRefGoogle Scholar
  521. Saniger JM (1995) Al-O infrared vibrational frequencies of γ-alumina. Mater Lett 22(1):109–113CrossRefGoogle Scholar
  522. Sanjeewa LD, McGuire MA, McMillen CD, Willett D, Chumanov G, Kolis JW (2016) Honeycomb-like S= 5/2 spin-lattices in manganese (II) vanadates. Inorg Chem 55:9240–9249CrossRefGoogle Scholar
  523. Sapozhnikov AN, Kaneva EP, Surorova LP, Levitsky VI, Ivanova LA (2016) Sulfhydrylbystrite, Na5K2Ca[Al6Si6O24](S5)(SH), a new mineral with the LOS framework, and re-interpretation of bystrite: cancrinite-group minerals with novel extra-framework anions. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.106CrossRefGoogle Scholar
  524. Sarr O, Diop L (1984) The vibrational spectra of the crystalline tripotassium hydrogen pyrophosphates K3HP2O7∙3H2O and K3HP2O7. Spectrochim Acta A 40(11):1011–1015CrossRefGoogle Scholar
  525. Sarr O, Diop L (1987) Ir and Raman spectra of M3HP2O7nH2O (M = Na, Cs; n = 0, 1, 9). Correlation between the POP bridge vibrational frequencies and the POP angle value. Spectrochim Acta A 43(8):999–1005CrossRefGoogle Scholar
  526. Scheuermann W, Schutte CJH (1973b) Raman and infrared spectra of SrSeO4 and PbSeO4. J Raman Spectrosc 1(6):619–627CrossRefGoogle Scholar
  527. Schiffer J, Hornig DF (1961) On a reported new form of ice. J Chem Phys 35:1136–1137CrossRefGoogle Scholar
  528. Schingaro E, Kullerud K, Lacalamita M, Mesto E, Scordari F, Zozulya D, Erambert R, Ravna EJ (2014) Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): structure, composition and origin. Lithos 210:1–13CrossRefGoogle Scholar
  529. Schmidt A, Lerch M, Eufinger J-P, Janek J, Tranca I, Islam MM, Bredow T, Dolle R, Wiemhöfer H-D, Boysen H, Hölzel M (2014) Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): an investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ionics 254:48–58CrossRefGoogle Scholar
  530. Schönenberger UW, Günter JR, Oswald HR (1971) Polymorphism of copper (II) hydroxide. J Solid State Chem 3(2):190–193CrossRefGoogle Scholar
  531. Seidel H, Ehrhardt H, Viswanathan K, Johannes W (1974) Darstellung, Struktur und Eigenschaften von Kupfer (II)-Carbonat. Z anorg allg Chemie 410(2):138–148. (in German)CrossRefGoogle Scholar
  532. Sejkora J, Grey IE, Kampf AR, Price JR, Čejka J (2016) Tvrdýite, Fe2+Fe3+2Al3(PO4)4(OH)5(OH2)4∙2H2O, a new phosphate mineral from Krásno near Horní Slavkov, Czech Republic. Mineral Mag.  https://doi.org/10.1180/minmag.2016.080.045CrossRefGoogle Scholar
  533. Shao-Long T, Qiang S, Ya-Qin Y, Jian-Fang M (1996) A new phosphate, KMgY(PO4)2, isostructural with xenotime. Chin J Chem 14(1):25–30CrossRefGoogle Scholar
  534. Shin Y, Lee DW, Choi KY, Koo HJ, Ok KM (2013) VSb(SeO3)4, first selenite containing V3+cation: synthesis, structure, characterization, magnetic properties, and calculations. Inorg Chem 52(24):14224–14230CrossRefGoogle Scholar
  535. Shinde VV, Dhoble SJ (2015) Wet chemical synthesis of Na21(SO4)7F6Cl:Ce optoelectronics materials. IOP Conf Series Mater Sci Eng 73(1):012038. (7 pp).  https://doi.org/10.1088/1757-899X/73/1/012038CrossRefGoogle Scholar
  536. Shinde VV, Shinde SV, Dhoble NS, Dhoble SJ (2015) Luminescence investigations of RE3+ (RE3+ = Dy3+, Eu3+, Tb3+) activated Na21(SO4)7F6Cl optoelectronic nanophosphors under near UV excitation for LED. J Inorg Organometal Polym Mater 25(3):593–600CrossRefGoogle Scholar
  537. Shirozu H, Ishida K (1982) Infrared study of some 7 Ǻ and 14 Ǻ layer silicates by deuteration. Mineral J (Jpn) 11(4):161–171CrossRefGoogle Scholar
  538. Siebert H (1959) Ultrarotspektren von Tellursäuren, Telluraten und Antimonaten. Z anorg allg Chemie 301(3–4):161–170. (in German)CrossRefGoogle Scholar
  539. Simakin AG, Eremyashev VE, Kucherinenko YV (2010) New data on dmisteinbergite. Zapiski RMO (Proc Russ Miner Soc) 139(3):102–108. (in Russian)Google Scholar
  540. Sithole J, Ngom BD, Khamlich S, Manikanadan E, Manyala N, Saboungi ML, Knoessen D, Nemutudi R, Maaza M (2012) Simonkolleite nano-platelets: synthesis and temperature effect on hydrogen gas sensing properties. Appl Surface Sci 258(20):7839–7843CrossRefGoogle Scholar
  541. Sivakumar T, Chang HY, Baek J, Halasyamani PS (2007) Two new noncentrosymmetric polar oxides: synthesis, characterization, second-harmonic generating, and pyroelectric measurements on TlSeVO5 and TlTeVO5. Chem Mater 19(19):4710–4715CrossRefGoogle Scholar
  542. Slade RC, Knowles JA, Jones DJ, Rozière J (1997) The isomorphousacidsalts α-Zr(HPO4)2∙H2O, α-Ti(HPO4)2∙H2O and α-Zr(HAsO4)2∙H2O. Comparative thermochemistry and vibrational spectroscopy. Solid State Ionics 96(1):9–19CrossRefGoogle Scholar
  543. Smirnov M, Sukhomlinov S, Mirgorodsky A, Masson O, Béchade E, Colas M, Merle-Méjean T, Julien I, Thomas P (2010) Raman and infrared spectra of doped La8+xSr2−y(SiO4)6O2+δ compounds compared to the ab initio-obtained spectroscopic characteristics of fully stoichiometric La8Sr2(SiO4)6O2. J Raman Spectrosc 41(12):1700–1707CrossRefGoogle Scholar
  544. Smit WMA, Dirksen GJ, Stufkens DJ (1990) Infrared and Raman spectra of the elpasolites Cs2NaSbCl6 and Cs2NaBiCl6: evidence for a pseudo Jahn-Teller distorted ground state. J Phys Chem Solids 51(2):189–196CrossRefGoogle Scholar
  545. Snyder MQ, McCool BA, DiCarlo J, Tripp CP, DeSisto WJ (2006) An infrared study of the surface chemistry of titanium nitride atomic layer deposition on silica from TiCl4 and NH3. Thin Solid Films 514(1):97–102CrossRefGoogle Scholar
  546. Sobkowiak A, Roberts MR, Younesi R, Ericsson T, Häggström L, Tai CW, Andersson AM, Edström K, Gustafsson T, Björefors F (2013) Understanding and controlling the surface chemistry of LiFeSO4F for an enhanced cathode functionality. Chem Mater 25(15):3020–3029CrossRefGoogle Scholar
  547. Sohr G, Wilhelm D, Vitzthum D, Schmitt MK, Huppertz H (2014) The high-pressure borate HP-(NH4)B3O5. Z anorg allg Chemie 640(14):2753–2758CrossRefGoogle Scholar
  548. Sokolova E, Hawthorne FC, Abdu YA (2013) From structure topology to chemical composition. XV. Titanium silicates: revision of the crystal structure and chemical formula of schüllerite, Na2Ba2Mg2Ti2(Si2O7)2O2F2, from the Eifel volcanic region, Germany. Can Mineral 51(5):715–725CrossRefGoogle Scholar
  549. Souag R, Kamel N, Hammadi M, Kamel Z, Moudir D, Aouchiche F, Mouheb Y, Kamariz S (2015) Study of leaching of a 2M-Zirconolite (Ca0.83Ce0.17ZrTi1.66Al0.34O7) in acidic and basic media. J Ceram Proc Res 16(1):150–155Google Scholar
  550. Sourisseau C, Cavagnat R, Fouassier M, Maraval P (1990) Electronic, vibrational and resonance Raman spectra of the layered semiconducting compound NbS3. J Raman Spectrosc 21(6):337–349CrossRefGoogle Scholar
  551. Souza de Araujo A, Carlos Diniz J, da Silva AOS, Alves de Melo RA (1997) Hydrothermal synthesis of cerium aluminophosphate. J Alloys Compd 250(1):532–535CrossRefGoogle Scholar
  552. Srinivasan TT, Srivastava CM, Venkataramani N, Patni MJ (1984) Infrared absorption in spinel ferrites. Bull Mater Sci 6(6):1063–1067CrossRefGoogle Scholar
  553. Sronsri C, Noisong P, Danvirutai C (2014) Synthesis and properties of LiMIIPO4 (MII = Mg, Mn0.5Mg0.5, Co0.5Mg0.5) affected by isodivalent doping and Li-sources. Solid State Sci 36:80–88CrossRefGoogle Scholar
  554. Stanimirova T, Kerestedjian T, Kirov G (2016) Dehydration and rehydration of Zn-hydroxy sulfate minerals with interrupted decorated hydroxide sheets. Appl Clay Sci.  https://doi.org/10.1016/j.clay.2016.08.032CrossRefGoogle Scholar
  555. Stavrakieva D, Ivanova Y, Pyrov J (1988) On the composition of the crystal phases in the PbO TeO2 system. J Mater Sci 23(5):1871–1876CrossRefGoogle Scholar
  556. Stepakova LV, Skripkin MY, Chernykh LV, Starova GL, Hajba L, Mink J, Sandström M (2008) Vibrational spectroscopic and force field studies of copper (II) chloride and bromide compounds, and crystal structure of KCuBr3. J Raman Spectrosc 39(1):16–31CrossRefGoogle Scholar
  557. Stoilova D, Vassileva V (1999) X-ray powder diffraction study and vibrational spectra of calcium cadmium formate. Crystal Res Technol 34(3):397–401CrossRefGoogle Scholar
  558. Stoilova D, Vassileva V (2002) Infrared spectroscopic study of solids in the Cu2(OH)3Cl (paratacamite) – Zn5(OH)8Cl2∙H2O (simonkolleite) series. Compt Rend de l’Academie Bulgare Sci 55(7):51–54Google Scholar
  559. Stoilova D, Marinova D, Georgiev M (2009) Hydrogen bond strength in chromates with kröhnkite-type chains, K2Me(CrO4)2∙2H2O (Me = Mg, Co, Ni, Zn, Cd). Vib Spectrosc 50(2):245–249CrossRefGoogle Scholar
  560. Stranford GT, Condrate RA Sr (1984a) The vibrational spectra and normal coordinate analyses of VSO5, VPO5 and VMoO5 phases. Spectrosc Lett 17(2):85–113CrossRefGoogle Scholar
  561. Stranford GT, Condrate RA Sr (1984b) The vibrational spectra of α-MoPO5 and α-NbPO5. J Solid State Chem 52(3):248–253CrossRefGoogle Scholar
  562. Stranford GT, Condrate RA Sr (1984c) The infrared and Raman spectra of β-TaPO5 and β-NbPO5. J Mater Sci Lett 3(4):303–306CrossRefGoogle Scholar
  563. Stranford GT, Condrate RA Sr (1990) A vibrational spectral study of hydrated tantalum phosphate (TaPO5) phases. J Solid State Chem 85(2):326–331CrossRefGoogle Scholar
  564. Strobel P, Ibarra-Palos A, Anne M, Poinsignon C, Crisci A (2003) Cation ordering in Li2Mn3MO8 spinels: structural and vibration spectroscopy studies. Solid State Sci 5(7):1009–1018CrossRefGoogle Scholar
  565. Sumathi S, Gopal B (2015) A new insight into biomedical applications of an apatite like oxyphosphate – BiCa4(PO4)3O. Ceram Intern 41(3):4852–4860CrossRefGoogle Scholar
  566. Sun Z, Luo K, Tan F, Zhang J (1994) Pingguite – a new bismuth tellurite mineral. Acta Mineral Sin 14:315–321Google Scholar
  567. Sun HY, Sun W, Huang YX, Mi JX (2010a) Low temperature flux synthesis and characterizations of a new layered barium borate BaB8O11(OH)4. Z anorg allg Chemie 636(6):977–981CrossRefGoogle Scholar
  568. Sun W, Huang YX, Pan Y, Mi JX (2015) Synthesis and magnetic properties of centennialite: a new S= ½ Kagomé antiferromagnet and comparison with herbertsmithite and kapellasite. Phys Chem Minerals 43(2):1–10Google Scholar
  569. Suzuki J, Ito M, Sugiura T (1976) A new copper sulfate-carbonate hydroxide hydrate mineral, (Mn,Ni,Cu)8(SO4)4(CO3)(OH)6·48H2O, from Nakauri, Aichi Prefecture, Japan. J Mineral Petrol Econ Geol 71:183–192Google Scholar
  570. Szilágyi IM, Madarász J, Hange F, Pokol G (2004) Online evolved gas analyses (EGA by TG-FTIR and TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition and partial reduction of ammonium paratungstate tetrahydrate. Solid State Ionics 172(1):583–586Google Scholar
  571. Tang ZH, Chen X, Li M (2008) Synthesis and crystal structure of a new strontium borate, Sr2B16O26. Solid State Sci 10(7):894–900CrossRefGoogle Scholar
  572. Tang Y, Cui M, Guo W, Zhang S, Yang M, He Z (2015) Syntheses, structure, and magnetic properties of new 3d–4f heterometallic hydroxysulfates Ln2Cu(SO4)2(OH)4 (Ln = Sm, Eu, Tb, or Dy) with a two-dimensional triangle network. Cryst Growth Design 15(6):2742–2747CrossRefGoogle Scholar
  573. Tao Y, Shiyang G, Lixia Z, Shuping X, Kaibei Y (2002) Crystal growth and crystal structure of magnesium oxysulfate 2MgSO4(Mg(OH)2)∙2H2O. J Molec Struct 616(1):247–252CrossRefGoogle Scholar
  574. Tao Z, Zhang W, Huang Y, Wei D, Seo HJ (2014) A novel pyrophosphate BaCr2(P2O7)2 as green pigment with high NIR solar reflectance and durable chemical stability. Solid State Sci 34:78–84CrossRefGoogle Scholar
  575. Tarte P (1963) Etude infra-rouge des orthosilicates et des orthogermanates – III: Structures du type spinelle. Spectrochim Acta 19(1):49–71. (in French)CrossRefGoogle Scholar
  576. Tarte P, Cahay R, Rulmont A, Werding G (1985) Infrared spectrum of synthetic isotopic species of sinhalite MgAlBO4. Spectrochim Acta A 41(10):1215–1219CrossRefGoogle Scholar
  577. Tarte P, Rulmont A, Merckaert-Ansay C (1986) Vibrational spectrum of nasicon-like, rhombohedral orthophosphates MIMIV2(PO4)3. Spectrochim Acta A 42(9):1009–1016CrossRefGoogle Scholar
  578. Tarte P, Rulmont A, Sbai K, Simonot-Grange MH (1987) Vibrational spectrum of KMIIP3O9 tricyclophosphates with the benitoite structure. Spectrochim Acta A 43(3):337–343CrossRefGoogle Scholar
  579. Taylor MD, Cheung TT, Hussein MA (1972) Variations of the infrared spectra with the nature and structure of the rare earth metal halides. J Inorg Nucl Chem 34(10):3073–3079CrossRefGoogle Scholar
  580. Ternane R, Ferid M, Kbir-Ariguib N, Trabelsi-Ayedi M (2000) The silver lead apatite Pb8Ag2(PO4)6: hydrothermal preparation. J Alloys Compd 308(1):83–86CrossRefGoogle Scholar
  581. Ternane R, Ferid M, Panczer G, Trabelsi-Ayadi M (2008) Structural, optical and scintillation properties of cerium cyclotriphosphates and polyphosphates. J Phys Chem Solids 69(7):1684–1690CrossRefGoogle Scholar
  582. Tomaszewski PE, Mączka M, Majchrowski A, Waśkowska A, Hanuza J (2005) Crystal structure and vibrational properties of KMg4(PO4)3. Solid State Sci 7(10):1201–1208CrossRefGoogle Scholar
  583. Toumi M, Hlel F, Chaabane TB, Smiri L, Laligant Y, Emery J (1998) X-ray powder structure determination of Li6P6O18∙3H2O. Eur J Solid State Inorg Chem 35(10):689–697CrossRefGoogle Scholar
  584. Tran TT, Halasyamani PS (2013) New fluoride carbonates: centrosymmetric KPb(CO3)2F and noncentrosymmetric K2.70Pb5.15(CO3)5F3. Inorg Chem 52(5):2466–2473CrossRefGoogle Scholar
  585. Tran TH, Tran KA, Pham TH, Le TV, Le QM (2012) Effect of the soft-template agents on size, shape and optical properties of YVO4: Eu3+ nanomaterials. Adv Natur Sci Nanosci Nanotechnol 3(3):035012. (4 pp)CrossRefGoogle Scholar
  586. Tyutyunnik AP, Zubkov VG, Tarakina NV, Krasil'nikov VN, Perelyaeva LA, Baklanova IV, Svensson G (2006) Synthesis, crystal structure and vibrational spectra of KCrV2O7 and RbCrV2O7. Solid State Sci 8(11):1344–1352CrossRefGoogle Scholar
  587. Unnikrishnan NV, Ittyachen MA (2016) Growth and characterization of Sm3+ doped cerium oxalate single crystals. J Mater Res Technol.  https://doi.org/10.1016/j.jmrt.2016.01.001CrossRefGoogle Scholar
  588. Uztetik-Amour A, Kizilyalli M (1995) Solid-state synthesis, X-ray powder diffraction, and IR data of Na2GdOPO4. J Solid State Chem 120(2):275–278CrossRefGoogle Scholar
  589. Vandenborre MT, Husson E, Fourquet JL (1982) Spectresvibrationnels et champ de force de divers composés de formule A2B2O7 et A2B2O6 de structure pyrochlore. Spectrochim Acta A 38(9):997–1003. (in French)CrossRefGoogle Scholar
  590. Velchuri R, Kumar BV, Devi VR, Prasad G, Prakash DJ, Vithal M (2011a) Preparation and characterization of rare earth orthoborates, LnBO3 (Ln = Tb, La, Pr, Nd, Sm, Eu, Gd, Dy, Y) and LaBO3:Gd, Tb, Eu by metathesis reaction: ESR of LaBO3:Gd and luminescence of LaBO3:Tb, Eu. Mater Res Bull 46(8):1219–1226CrossRefGoogle Scholar
  591. Velchuri R, Kumar BV, Devi VR, Prakash DJ, Vithal M (2011b) Solid-state syntheses of rare-earth–doped Sr1-xLn2x/3MgP2O7 (Ln = Gd, Eu, Dy, Sm, Pr, and Nd; x = 0.05) by metathesis reactions and their spectroscopic characterization. Spectrosc Lett 44(4):258–266CrossRefGoogle Scholar
  592. Ventruti G, Della Ventura G, Bellatreccia F, Lacalamita M, Schingaro E (2016) Hydrogen bond system and vibrational spectroscopy of the iron sulfate fibroferrite, Fe(OH)SO4∙5H2O. Eur J Mineral.  https://doi.org/10.1127/ejm/2016/0028-2571CrossRefGoogle Scholar
  593. Vigouroux JP, Husson E, Calvarin G, Dao NQ (1982) Etude par spectroscopié vibrationnelle des oxydes Pb3O4, SnPb2O4 et SnPb(Pb2O4)2. Spectrochim Acta A 38(4):393–398. (in French)CrossRefGoogle Scholar
  594. Vilminot S, Richard-Plouet M, André G, Swierczynski D, Bourée-Vigneron F, Kurmoo M (2003) Hydrothermal synthesis in the system Ni(OH)2–NiSO4: nuclear and magnetic structures and magnetic properties of Ni3(SO4)2(OH)2∙2H2O. Inorg Chem 42(21):6859–6867CrossRefGoogle Scholar
  595. Vimal G, Mani KP, Jose G, Biju PR, Joseph C, Unnikrishnan NV, Ittyachen MA (2014) Growth and spectroscopic properties of samarium oxalate single crystals. J Cryst Growth 404:20–25CrossRefGoogle Scholar
  596. Vivekanandan K, Selvasekarapandian S, Kolandaivel P (1995) Raman and FT-IR studies of Pb4(NO3)2(PO4)2∙2H2O. Mater Chem Phys 39:284–289CrossRefGoogle Scholar
  597. Vlaev LT, Genieva SD, Gospodinov GG (2005) Study of the crystallization fields of cobalt (II) selenites in the system CoSeO3-SeO2-H2O. J Thermal Anal Calorimetry 81(2):469–475CrossRefGoogle Scholar
  598. Volkovich VA, Griffiths TR, Fray DJ, Fields M (1998) Vibrational spectra of alkali metal (Li, Na and K) uranates and consequent assignment of uranate ion site symmetry. Vib Spectrosc 17(1):83–91CrossRefGoogle Scholar
  599. Voll D, Beran A, Schneider H (2006) Variation of infrared absorption spectra in the system Bi2Al4−xFexO9 (x = 0–4), structurally related to mullite. Phys Chem Minerals 33(8–9):623–628CrossRefGoogle Scholar
  600. Vuk AŠ, Orel B, Dražič G (2001) IR spectroelectrochemical studies of Fe2V4O13, FeVO4 and InVO4 thin films obtained via sol-gel synthesis. J Solid State Electrochem 5(7–8):437–449Google Scholar
  601. Wang G, Wu Y, Fu P, Liang X, Xu Z, Chen C (2002) Crystal growth and properties of β-Zn3BPO7. Chem Mater 14(5):2044–2047CrossRefGoogle Scholar
  602. Wang CM, Liao CH, Chen PL, Lii KH (2006b) UF3(H2O)(C2O4)0.5: a fluorooxalate of tetravalent uranium with a three-dimensional framework structure. Inorg Chem 45(4):1436–1438CrossRefGoogle Scholar
  603. Wang Y, Yi Z, Li Y, Yang Q, Wang D (2007) Hydrothermal synthesis of potassium niobate powders. Ceram Intern 33(8):1611–1615CrossRefGoogle Scholar
  604. Wang Y, Pan S, Tian X, Zhou Z, Liu G, Wang J, Jia D (2009b) Synthesis, structure, and properties of the noncentrosymmetric hydrated borate Na2B5O8(OH)∙2H2O. Inorg Chem 48(16):7800–7804CrossRefGoogle Scholar
  605. Wang Y, Liang J, Wen T, Li K, Wang Y, Li G, Lin J (2012) Syntheses and properties of a series of chromium vanadates ACrV2O7 (A = Na, K, Rb, Cs) with layered structure. J Solid State Chem 192:1–6CrossRefGoogle Scholar
  606. Wang Y, Lu X, Wang T, Pan F, Yan Y, Zhang Z (2013) Hydrothermal synthesis of flower-like ammonium illite constructed by nanosheets from coal series kaolin. Mater Lett 96:233–236CrossRefGoogle Scholar
  607. Wei Q, Cheng JW, He C, Yang GY (2014) An acentric calcium borate Ca2[B5O9](OH)∙H2O: ynthesis, structure, and nonliner optical property. Inorg Chem 53(21):11757–11763CrossRefGoogle Scholar
  608. Weil M (2000) Preparation, single crystal structure analysis, and thermal behaviour of the acidic mercury (I) phosphate (Hg2)2(H2PO4)(PO4). Z anorg allg Chemie 626(8):1752–1756. (in English)CrossRefGoogle Scholar
  609. White WB, Keramidas VG (1972) Vibrational spectra of oxides with the C-type rare earth oxide structure. Spectrochim Acta A 28(3):501–509CrossRefGoogle Scholar
  610. Wickleder M, Logemann C, Schwarzer S (2016) Oxidizing rhodium with sulfuric acid: the sulfates Rh2(SO4)3 and Rh2(SO4)3∙2H2O. Eur J Inorg Chem.  https://doi.org/10.1002/ejic.201601247CrossRefGoogle Scholar
  611. Wieghardt K, Siebert H (1971) Zur Kenntnis der Hexafluoromanganate (III). Z anorg allg Chemie 381(1):12–20. (in German)CrossRefGoogle Scholar
  612. Wienold J, Jentoft RE, Ressler T (2003) Structural investigation of the thermal decomposition of ammonium heptamolybdate by in situ XAFS and XRD. Eur J Inorg Chem 2003(6):1058–1071CrossRefGoogle Scholar
  613. Wiewióra A, Hida T (1996) X-Ray determination of superstructure of pyrophyllite from Yano-Shokozan mine, Hiroshima, Japan. Clay Sci 10(1):15–35Google Scholar
  614. Wijzen F, Rulmont A, Tarte P (1994) Origin of spurious bands in the infrared spectrum of Ba2TiO4. Spectrochim Acta A 50(4):677–681CrossRefGoogle Scholar
  615. Wild S, Elliott H, Thompson DP (1978) Combined infra-red and X-ray studies of β-silicon nitride and β′-sialons. J Mater Sci 13(8):1769–1775CrossRefGoogle Scholar
  616. Wilkins RWT (1971) Infrared spectroscopy in the mineralogical analysis of uranium ores. N Jb Miner Mh 11:441–450Google Scholar
  617. Witzke T, Zhen S, Seff K, Doering T, Nasdala L, Kolitsch U (2001) Ronneburgite, K2MnV4O12, a new mineral from Ronneburg, Thuringia, Germany: description and crystal structure. Am Mineral 86(9):1081–1086CrossRefGoogle Scholar
  618. Wu L, Chen XL, Li H, He M, Xu YP, Li XZ (2005) Structure determination and relative properties of novel cubic borates MM'4 (BO3) 3 (M = Li, M' = Sr; M = Na, M' = Sr, Ba). Inorg Chem 44(18):6409–6414CrossRefGoogle Scholar
  619. Wu L, Chen XL, Xu YP, Sun YP (2006a) Structure determination and relative properties of novel noncentrosymmetric borates MM'4(BO3)3 (M = Na, M' = Ca and M = K, M' = Ca, Sr). Inorg Chem 45(7):3042–3047CrossRefGoogle Scholar
  620. Wu L, Chen XL, Zhang Y, Kong YF, Xu JJ, Xu YP (2006b) Ab initio structure determination of novel borate NaSrBO3. J Solid State Chem 179(4):1219–1224CrossRefGoogle Scholar
  621. Wu L, Sun JC, Zhang Y, Jin SF, Kong YF, Xu JJ (2010a) Structure determination and relative properties of novel chiral orthoborate KMgBO3. Inorg Chem 49(6):2715–2720CrossRefGoogle Scholar
  622. Wu H, Pan S, Poeppelmeier KR, Li H, Jia D, Chen Z, Fan X, Yang Y, Rondinelli JM, Luo H (2011) K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. J Am Chem Soc 133(20):7786–7790CrossRefGoogle Scholar
  623. Xhaxhiu K, Saraçi E, Bente K (2013) Sequestration of supercritical CO2 by mercury oxide. Chem Papers 67(6):594–600CrossRefGoogle Scholar
  624. Xiao B, Dellen J, Schlenz H, Bosbach D, Suleimanov EV, Alekseev EV (2014) Unexpected structural complexity in cesium thorium molybdates. Cryst Growth Design 14(5):2677–2684CrossRefGoogle Scholar
  625. Xiao B, Schlenz H, Dellen J, Bosbach D, Suleimanov EV, Alekseev EV (2015) From two-dimensional layers to three-dimensional frameworks: expanding the structural diversity of uranyl compounds by cation-cation interactions. Cryst Growth Design 15(8):3775–3784CrossRefGoogle Scholar
  626. Xie HD, Shen DZ, Wang XQ, Shen GQ (2007) Growth and characterization of KBi(WO4)2 single crystals. Cryst Res Technol 42(1):18–22CrossRefGoogle Scholar
  627. X-ray Laboratory, Peking Institute of Uranium Geology, Wuhan Geological College (1978) Orthobrannerite – a new mineral of the brannerite group. Acta Geol Sin 52:241–251. (in Chinese, English abstr)Google Scholar
  628. Xu J, Gilson DF, Butler IS (1998) FT-Raman and high-pressure FT-infrared spectroscopic investigation of monocalcium phosphate monohydrate, Ca(H2PO4)2∙H2O. Spectrochima Acta A 54(12):1869–1878CrossRefGoogle Scholar
  629. Yagoubi S, Obbade S, Benseghir M, Abraham F, Saadi M (2007) Synthesis, crystal structure, cationic mobility, thermal evolution and spectroscopic study of Cs8(UO2)4(WO4)4(WO5)2 containing infinite uranyl tungstate chains. Solid State Sci 9(10):933–943CrossRefGoogle Scholar
  630. Yagoubi S, Renard C, Abraham F, Obbade S (2013) Molten salt flux synthesis and crystal structure of a new open-framework uranyl phosphate Cs3(UO2)2(PO4)O2: spectroscopic characterization and cationic mobility studies. J Solid State Chem 200:13–21CrossRefGoogle Scholar
  631. Yan G, Zhang S, Zhao M, Ding J, Li D (1992) Jianshuiite – a new magnesic mineral of chalcophanite group. Acta Mineral Sin 12:69–77. (in Chinese, English Abstr)Google Scholar
  632. Yang Z, Giester G (2016) Hydrogen-bonding system in amarillite, NaFe(SO4)2(H2O)6: the structure refinement. Eur J Mineral.  https://doi.org/10.1127/ejm/2016/0028-2567CrossRefGoogle Scholar
  633. Yang M, Yu J, Shi L, Chen P, Li G, Chen Y, Xu R, Gao S (2006) Synthesis, dtructure, and magnetic property of a new open-framework manganese borophosphate, [NH4]4[Mn9B2(OH)2(HPO4)4(PO4)6]. Chem Mater 18(2):476–481CrossRefGoogle Scholar
  634. Yang Y, Fang H, Zheng J, Li L, Li G, Yan G (2008b) Towards the understanding of poor electrochemical activity of triclinic LiVOPO4: experimental characterization and theoretical investigations. Solid State Sci 10(10):1292–1298CrossRefGoogle Scholar
  635. Yang Y, Pan S, Li H, Han J, Chen Z, Zhao W, Zhou Z (2011e) Li4Cs3B7O14: synthesis, crystal structure, and optical properties. Inorg Chem 50(6):2415–2419CrossRefGoogle Scholar
  636. Yang Y, Wu J, Wang Y, Zhu J, Liu R, Meng C (2011f) Synthesis, crystal structure and characterization of a new protonated magnesium borophosphate: (H3O)Mg(H2O)2[BP2O8]∙H2O. Z anorg allg Chemie 637(1):137–141. (in English)CrossRefGoogle Scholar
  637. Yang Z, Giester G, Mao Q, Ma Y, Zhang D, Li H (2016b) Zincobotryogen, ZnFe3+(SO4)2(OH)·7H2O: validation as a mineral species and new data. Mineral Petrol.  https://doi.org/10.1007/s00710-016-0484-9CrossRefGoogle Scholar
  638. Yanqing Z, Erwei S, Suxian C, Wenjun L, Xingfang H (2000) Hydrothermal preparation and characterization of brookite-type TiO2 nanocrystallites. J Mater Sci Lett 19(16):1445–1448CrossRefGoogle Scholar
  639. Yeon J, Kim SH, Hayward MA, Halasyamani PS (2011) “A” cation polarity control in ACuTe2O7 (A = Sr2+, Ba2+, or Pb2+). Inorg Chem 50(17):8663–8670CrossRefGoogle Scholar
  640. Yin J, Li G, Yang G, Ge X, Xu H, Wang J (2015) Fluornatropyrochlore, a new pyrochlore supergroup mineral from the Boziguoer rare earth element deposit, Baicheng County, Akesu, Xinjiang, China. Can Mineral 53:455–460CrossRefGoogle Scholar
  641. Yu Z-T, Shi Z, Jiang Y-S, Yuan H-M, Chen J-S (2002) A chiral lead borate containing infinite and finite chains built up from BO4 and BO3 units. Chem Mater 14(3):1314–1318CrossRefGoogle Scholar
  642. Yu H, Pan S, Wu H, Su X, Yang Z (2014) Synthesis, structures, optical properties and electronic structures of two mixed metal borates MBaB5O9 (M = Na, K). J Alloys Compd 585:602–607CrossRefGoogle Scholar
  643. Yu H, Young J, Wu H, Zhang W, Rondinelli JM, Halasyamani PS (2016) Electronic, crystal chemistry, and nonlinear optical property relationships in the dugganite A3B3CD2O14 family. J Am Chem Soc 138(14):4984–4989CrossRefGoogle Scholar
  644. Yuan AQ, Wu J, Huang ZY, Wu K, Liao S, Tong ZF (2008) Synthesis of NH4FePO4∙H2Onano-plates via solid-state reaction at low temperature and its thermochemistry properties. Mater Res Bull 43(6):1339–1345CrossRefGoogle Scholar
  645. Yuvaraj S, Karthikeyan K, Kalpana D, Lee YS, Selvan RK (2016) Surfactant-free hydrothermal synthesis of hierarchically structured spherical CuBi2O4 as negative electrodes for Li-ion hybrid capacitors. J Colloid Interface Sci 469:47–56CrossRefGoogle Scholar
  646. Zaitsev AN, Avdontseva EY, Britvin SN, Demény A, Homonnay Z, Jeffries TE, Keller J, Krivovichev VG, Markl G, Platonova NV, Siidra OI, Spratt J, Vennemann T (2013) Oxo-magnesio-hastingsite, NaCa2(Mg2Fe3+3)(Al2Si6)O22O2, a new anhydrous amphibole from the Deeti volcanic cone, Gregory rift, northern Tanzania. Mineral Mag 77(6):2773–2792CrossRefGoogle Scholar
  647. Zaitsev AN, Britvin SN, Kearsley A, Wenzel T, Kirk C (2017) Jörgkellerite, Na3Mn3+3(PO4)2(CO3)O2·5H2O, a new layered phosphate-carbonate mineral from the Oldoinyo Lengai volcano, Gregory rift, northern Tanzania. Mineral Petrol 111:373–381CrossRefGoogle Scholar
  648. Zhan P (2009) Large scale hydrothermal synthesis of β-Co(OH)2 hexagonal nanoplates and their conversion into porous Co3O4nanoplates. J Alloys Compd 478(1):823–826CrossRefGoogle Scholar
  649. Zhang G, Wu Y, Fu P, Wang G, Liu H, Fan G, Chen C (2002b) A new sodium samarium borate Na3Sm2(BO3)3. J Phys Chem Solids 63(1):145–149CrossRefGoogle Scholar
  650. Zhang G, Wu Y, Li Y, Chang F, Pan S, Fu P, Chen C (2005) Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8. J Cryst Growth 275(1):e1997–e2001CrossRefGoogle Scholar
  651. Zhang D, Yoshioka F, Ikeue K, Machida M (2008) Synthesis and oxygen release/storage properties of Ce-substituted La-oxysulfates, (La1−xCex)2O2SO4. Chem Mater 20(21):6697–6703CrossRefGoogle Scholar
  652. Zhang G, Liu Z, Zhang J, Fan F, Liu Y, Fu P (2009a) Crystal growth, structure, and properties of a non-centrosymmetric fluoride borate, Ba3Sr4(BO3)3F5. Cryst Growth Des 9(7):3137–3141CrossRefGoogle Scholar
  653. Zhang H, Chen G, Li X, Wang Q (2009b) Electronic structure and water splitting under visible light irradiation of BiTa1−xCuxO4 (x = 0.00–0.04) photocatalysts. Int J Hydrogen Energy 34(9):3631–3638CrossRefGoogle Scholar
  654. Zhang SY, Jiang HL, Sun CF, Mao JG (2009c) Syntheses, crystal structures, and properties of five new transition metal molybdenum(VI) selenites and tellurites. Inorg Chem 48(24):11809–11820CrossRefGoogle Scholar
  655. Zhang M, Pan S, Han J, Yang Z, Su X, Zhao W (2012a) Li2Sr4B12O23: a new alkali and alkaline-earth metal mixed borate with [B10O18]6− network and isolated [B2O5]4− unit. J Solid State Chem 190:92–97CrossRefGoogle Scholar
  656. Zhang W, Wang X, Shen G, Shen D (2012b) Top-seeded growth, optical properties and theoretical studies of noncentrosymmetric Te2V2O9. Cryst Res Technol 47(2):163–168CrossRefGoogle Scholar
  657. Zhang Y, Zhang Y, Zhao X, Zhang Y (2016b) Sol–gel synthesis and properties of europium–strontium copper silicates blue pigments with high near-infrared reflectance. Dyes Pigments 131:154–159CrossRefGoogle Scholar
  658. Zhao H, Wang J, Li J, Xu G, Zhang H, Yu L, Gao W, Xia H, Boughton RI (2008a) Lattice vibrations and thermal properties of stoichiometric KYb(WO4)2 crystal. Cryst Growth Design 8(11):3978–3983CrossRefGoogle Scholar
  659. Zhao W, Pan S, Han J, Zhou Z (2011) Synthesis, crystal structure and optical properties of a new lead bismuth borate. Inorg Chim Acta 379(1):130–134CrossRefGoogle Scholar
  660. Zhao W, Pan S, Wang Y, Yang Z, Wang X, Han J (2012) Structure, growth and properties of a novel polar material, KSr4(BO3)3. J Solid State Chem 195:73–78CrossRefGoogle Scholar
  661. Zhao C, Wang F, Sun Y, Zhou Y (2013a) Synthesis and characterization of β-Yb2Si2O7 powders. Ceram Int 39(5):5805–5811CrossRefGoogle Scholar
  662. Zhao L, Liu W, Cao L, Su G, Gao R, Yang H (2015) A new member of ferrous sulfates, FeSO4∙2H2O with PtS topology showing spin-canted long-range antiferromagnetic ordering. J Solid State Chem 231:58–63CrossRefGoogle Scholar
  663. Zheng HL, Zhang ZC, Zhou JG, Yang SS, Zhao J (2012) Vibrational spectra of CaGa2O4, Ca2GeO4, CaIn2O4 and CaSnO3 prepared by electrospinning. Appl Phys A 108(2):465–473CrossRefGoogle Scholar
  664. Zhigadlo ND, Zhang M, Salje EKH (2001) An infrared spectroscopic study of Li2B4O7. J Phys Condens Matter 13(30):6551–6561CrossRefGoogle Scholar
  665. Zhou D, Huang G, Chen X, Xu J, Gong S (2004) Synthesis of LaAlO3 via ethylenediaminetetraacetic acid precursor. Mater Chem Phys 84(1):33–36CrossRefGoogle Scholar
  666. Zhou Y, Hoffmann S, Huang YX, Prots Y, Schnelle W, Menezes PW, Carrillo-Cabrera W, Sichelschmidt J, Mi J-X, Kniep R (2011) K3Ln[OB(OH)2]2[HOPO3]2 (Ln = Yb, Lu): layered rare-earth dihydrogen borate monohydrogen phosphates. J Solid State Chem 184(6):1517–1522CrossRefGoogle Scholar
  667. Zhu D, Yun S, Nai X, Zhao D, Liu X, Li W (2013) Synthesis and characterization of strontium chloroborate whiskers. Cryst Res Technol 48(1):6–10CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nikita V. Chukanov
    • 1
  • Marina F. Vigasina
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Geological FacultyMoscow State UniversityMoscowRussia

Personalised recommendations